General linear cameras with finite aperture l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 68

General Linear Cameras with Finite Aperture PowerPoint PPT Presentation


  • 82 Views
  • Uploaded on
  • Presentation posted in: General

General Linear Cameras with Finite Aperture. Andrew Adams and Marc Levoy Stanford University. Ray Space. Slices of Ray Space. Pushbroom Cross Slit General Linear Cameras. Yu and McMillan ‘04. Román et al. ‘04. Projections of Ray Space. Plenoptic Cameras Camera Arrays

Download Presentation

General Linear Cameras with Finite Aperture

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


General linear cameras with finite aperture l.jpg

General Linear Cameras with Finite Aperture

Andrew Adams and Marc Levoy

Stanford University


Ray space l.jpg

Ray Space


Slices of ray space l.jpg

Slices of Ray Space

  • Pushbroom

  • Cross Slit

  • General Linear

    Cameras

Yu and McMillan ‘04

Román et al. ‘04


Projections of ray space l.jpg

Projections of Ray Space

  • Plenoptic Cameras

  • Camera Arrays

  • Regular Cameras

Ng et al. ‘04

Leica Apo-Summicron-M

Wilburn et al. ‘05


What is this paper l.jpg

What is this paper?


What is this paper6 l.jpg

What is this paper?

  • An intuitive reformulation of general linear cameras in terms of eigenvectors


What is this paper7 l.jpg

What is this paper?

  • An intuitive reformulation of general linear cameras in terms of eigenvectors

  • An analogous description of focus


What is this paper8 l.jpg

What is this paper?

  • An intuitive reformulation of general linear cameras in terms of eigenvectors

  • An analogous description of focus

  • A theoretical framework for understanding and characterizing linear slices and integral projections of ray space


Slices of ray space9 l.jpg

Slices of Ray Space

  • Perspective View

  • Image(x, y) = L(x, y, 0, 0)


Slices of ray space10 l.jpg

Slices of Ray Space

  • Orthographic View

  • Image(x, y) = L(x, y, x, y)


Slices of ray space11 l.jpg

Slices of Ray Space

  • Image(x, y) = L(x, y, P(x, y))

  • P determines perspective

  • Let’s assume P is linear


Slices of ray space12 l.jpg

Slices of Ray Space

P


Slices of ray space13 l.jpg

Slices of Ray Space


Slices of ray space14 l.jpg

Slices of Ray Space

  • Rays meet when:

    ((1-z)P + zI) is low rank

  • Substitute b = z/(z-1):

    ((1-z)P + zI) = (1-z)(P – bI)

  • Rays meet when:

    (P – bI) is low rank


Slices of ray space15 l.jpg

Slices of Ray Space

  • 0 < b1 = b2 < 1


Slices of ray space16 l.jpg

Slices of Ray Space

  • b1 = b2 < 0


Slices of ray space17 l.jpg

Slices of Ray Space

  • b1 = b2 = 1


Slices of ray space18 l.jpg

Slices of Ray Space

  • b1 = b2 > 1


Slices of ray space19 l.jpg

Slices of Ray Space

  • b1 != b2


Slices of ray space20 l.jpg

Slices of Ray Space

  • b1 != b2 = 1


Slices of ray space21 l.jpg

Slices of Ray Space

  • b1 = b2 != 1, deficient eigenspace


Slices of ray space22 l.jpg

Slices of Ray Space

  • b1 = b2 = 1, deficient eigenspace


Slices of ray space23 l.jpg

Slices of Ray Space

  • b1, b2 complex


Slices of ray space24 l.jpg

Slices of Ray Space


Slices of ray space25 l.jpg

Slices of Ray Space

Real Eigenvalues

Complex Conjugate Eigenvalues


Slices of ray space26 l.jpg

Slices of Ray Space

Real Eigenvalues

Equal Eigenvalues

Complex Conjugate Eigenvalues


Slices of ray space27 l.jpg

Slices of Ray Space

Real Eigenvalues

Equal Eigenvalues

Equal Eigenvalues,

2D Eigenspace

Complex Conjugate Eigenvalues


Slices of ray space28 l.jpg

Slices of Ray Space

One slit at infinity

Real Eigenvalues

Equal Eigenvalues

Equal Eigenvalues,

2D Eigenspace

Complex Conjugate Eigenvalues


Projections of ray space29 l.jpg

Projections of Ray Space


Projections of ray space30 l.jpg

Projections of Ray Space


Projections of ray space31 l.jpg

Projections of Ray Space


Projections of ray space32 l.jpg

Projections of Ray Space

  • Rays Integrated at (x, y) = (0, 0):

F


Projections of ray space33 l.jpg

Projections of Ray Space

  • Rays meet when:

    ((1-z)I + zF) is low rank

  • Substitute b = (z-1)/z:

    ((1-z)I + zF) = z(F – bI)

  • Rays meet when:

    (F – bI) is low rank


Projections of ray space34 l.jpg

Projections of Ray Space

  • 0 < b1 = b2 < 1


Projections of ray space35 l.jpg

Projections of Ray Space

  • 0 < b1 = b2 < 1


Projections of ray space36 l.jpg

Projections of Ray Space

  • b1 = b2 < 0


Projections of ray space37 l.jpg

Projections of Ray Space

  • b1 = b2 < 0


Projections of ray space38 l.jpg

Projections of Ray Space

  • b1 = b2 = 1


Projections of ray space39 l.jpg

Projections of Ray Space

  • b1 = b2 = 1


Projections of ray space40 l.jpg

Projections of Ray Space

  • b1 = b2 > 1


Projections of ray space41 l.jpg

Projections of Ray Space

  • b1 != b2


Projections of ray space42 l.jpg

Projections of Ray Space

  • b1 != b2


Projections of ray space43 l.jpg

Projections of Ray Space

  • b1 != b2


Projections of ray space44 l.jpg

Projections of Ray Space

  • b1 != b2 = 1


Projections of ray space45 l.jpg

Projections of Ray Space

  • b1 != b2 = 1


Projections of ray space46 l.jpg

Projections of Ray Space

  • b1 != b2 = 1


Projections of ray space47 l.jpg

Projections of Ray Space

  • b1 = b2 != 1, deficient eigenspace


Projections of ray space48 l.jpg

Projections of Ray Space

  • b1 = b2 != 1, deficient eigenspace


Projections of ray space49 l.jpg

Projections of Ray Space

  • b1 = b2 = 1, deficient eigenspace


Projections of ray space50 l.jpg

Projections of Ray Space

  • b1 = b2 = 1, deficient eigenspace


Projections of ray space51 l.jpg

Projections of Ray Space

  • b1, b2 complex


Slices of ray space52 l.jpg

Slices of Ray Space


Slices of ray space53 l.jpg

Slices of Ray Space

Real Eigenvalues

Complex Conjugate Eigenvalues


Slices of ray space54 l.jpg

Slices of Ray Space

Real Eigenvalues

Equal Eigenvalues

Complex Conjugate Eigenvalues


Slices of ray space55 l.jpg

Slices of Ray Space

Real Eigenvalues

Equal Eigenvalues

Equal Eigenvalues,

2D Eigenspace

Complex Conjugate Eigenvalues


Slices of ray space56 l.jpg

Slices of Ray Space

One focal slit at infinity

Real Eigenvalues

Equal Eigenvalues

Equal Eigenvalues,

2D Eigenspace

Complex Conjugate Eigenvalues


Projections of ray space57 l.jpg

Projections of Ray Space

  • Let’s generalize:


Projections of ray space58 l.jpg

Projections of Ray Space

  • Let’s generalize:


Projections of ray space59 l.jpg

Projections of Ray Space

  • Let’s generalize:


Projections of ray space60 l.jpg

Projections of Ray Space

  • Let’s generalize:


Projections of ray space61 l.jpg

Projections of Ray Space

  • Factor Q as:


Projections of ray space62 l.jpg

Projections of Ray Space

  • Factor Q as:

  • M warps lightfield in (x, y)

    • warps final image


Projections of ray space63 l.jpg

Projections of Ray Space

  • Factor Q as:

  • M warps lightfield in (x, y)

    • warps final image

  • A warps lightfield in (u, v)

    • shapes domain of integration (bokeh, aperture size)


Conclusion l.jpg

Conclusion


Conclusion65 l.jpg

Conclusion

  • General Linear Cameras can be characterized by the eigenvalues of a 2x2 matrix.


Conclusion66 l.jpg

Conclusion

  • General Linear Cameras can be characterized by the eigenvalues of a 2x2 matrix.

  • Focus can be described in the same fashion.


Conclusion67 l.jpg

Conclusion

  • General Linear Cameras can be characterized by the eigenvalues of a 2x2 matrix.

  • Focus can be described in the same fashion.

  • These matrices are a good way to analyze and specify linear integral projections of ray space.


Questions l.jpg

Questions


  • Login