1 / 22

Kitaoka lab. M1 Takayuki Nagai

Impurity Effect as a Probe for the Gap Function in the Filled Skutterudite Compound Superconductor PrOs 4 Sb 12 : Sb-NQR Study. Impurity Effect as a Probe for the Gap Function in the Filled Skutterudite Compound Superconductor PrOs 4 Sb 12 : Sb-NQR Study. Kitaoka lab. M1 Takayuki Nagai.

tamira
Download Presentation

Kitaoka lab. M1 Takayuki Nagai

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Impurity Effect as a Probe for the Gap Function in the Filled Skutterudite Compound Superconductor PrOs4Sb12 : Sb-NQR Study Impurity Effect as a Probe for the Gap Function in the Filled Skutterudite Compound Superconductor PrOs4Sb12 : Sb-NQR Study Kitaoka lab. M1 Takayuki Nagai • Reference M.NISHIYAMA et al , JPSJ . 74 . 1938 (2005)

  2. Introduction - Cooper pairing in superconductors - 2 disparate SC states in PrOs4Sb12 & PrRu4Sb12 • Experiments - NQR experiment in Pr(Os1-xRux)4Sb12 • Discussion - impurity effect - symmetry of SC gap for PrOs4Sb12 • Summary Outline

  3. ξ anisotropic superconductor (strongly correlated electron systems) • pairing force via spin fluctuation d-wave point-node line-node Introduction : Cooper-pair in superconducting state s-wave superconductor (in many metals & alloys) • pairing force via lattice oscillation BCS theory does not apply to anisotropic superconductors.

  4. ~10K PrOs4Sb12 • No coherence peak just below Tc anisotropic superconductivity ~70K • low temperature 1/T1 doesn’t follow Tn-dependence ~T3 PrOs4Sb12 Introduction : PrOs4Sb12 & PrRu4Sb12 - Nuclear spin-lattice relaxation time T1 - PrRu4Sb12 • T-linear behavior in the normal state • coherence peak just below TC • exponential decrease below TC BCS (s-wave) superconductivity PrRu4Sb12 Ref : M.Yogi et al, Phys. Rev. B 67,180501(R) (2003)

  5. Cage of 12 pnictogen atoms Motivation : CEF state PrOs4Sb12 PrRu4Sb12 Γ4(magnetic) ⊿CEF~10[K] ⊿CEF~70[K] Γ1 ( non-magnetic) TC : 1.3 K TC : 1.85 K m* : 1.6m0 m* : 7.6m0 ΔC/TC: 110 ΔC/TC: 500 γ : 59 γ : 350 - 750

  6. Tunneling spectroscopy[2] Sb-NQR (1/T1)[1] anisotropic s-wave ? Isotropic gap ? Magnetic penetration depth[3,4] Thermal conductivity under H[5] ・Full gap ・@ low temperature point-node ? Anisotropic gap ? Motivation : Decision of gap structure of PrOs4Sb12 s-wave? anisotropic gap? new gap structure? [1] H. Kotegawa et al., PRL 90 027001 (2003) [2] H. Suderow et al., PRB 69 060504(R) (2004) [3] E. E. M. Chia et al., PRL 91 247003 (2003) [4] E. E. M. Chia et al., cond-matt/0411395 [5] K. Izawa et al., PRL 90 117001 (2003)

  7. PrRu4Sb12 PrOs4Sb12 Pr(Os1-xRux)4Sb12 Os 0.67Å Crossover between two different superconducting character Ru 0.65Å Motivation : TC in Pr(Os1-xRux)4Sb12 Ref : N.A. Frederick et al, Phys. Rev. B 71, 064508 (2005) Os is replaced with Ru

  8. Experiments : Sb-NQR spectrum of Pr(Os1-xRux)4Sb12 Hamiltonian PrOs4Sb12 Ru:10% 123Sb Ru:20% 3ν Q 3ν Q 2ν 2ν Q Q PrRu4Sb12 1ν 1ν Q Q PrOs4Sb12 PrRu4Sb12

  9. Above T~100K 1/T1 can be fitted excellently by theoretical rate equation. Short component Long component Experiments : Nuclear magnetization recovery curve • Below T~100K 1/T1 : 2 components Ru-neighborhood Os-neighborhood

  10. Below ~ 1K T1T∝ const. 1/T1 : finite Experiments : 1/T1 (short component) TC=1.85K TC=1.6K TC=1.4K Ru:20% PrOs4Sb12 Ru:10%

  11. Discussion @ low temperature From the present results NS(E) : finite in the Ru-doped samples increases with increasing x

  12. Ce(Ru1-xAlx)2 x=0.01 x=0 x=0.03 Ref : H. Mukuda et al. JPSJ No.67, No.6, pp.2101-2106 (1998) Discussion : Impurity effect -Residual DOS (s-wave) scattering by impurities Cooper pairs are not broken.

  13. TC=0.7K Impurity mixed Sr2RuO4 Line-node TC=1.48K N0 Point-node Pure Sr2RuO4 N0 εF εF+Δ Nres Nodes in the gap function Impurities induce the residual DOS Ref : K. Ishida. et al. Phys. Rev. B 56 (1996) Discussion : Impurity effect -Residual DOS (p-wave , d-wave) d-wave p-wave Line-node Point-node

  14. Experiments : 1/T1 (short component) TC=1.85K TC=1.6K TC=1.4K Below ~ 1K T1T∝ const. Ru:20% RDOS Gap has nodes PrOs4Sb12 Ru:10%

  15. due to the excitation toΓ4 Γ4 Γ1 Discussion Discussion due to c-f coupling

  16. ΔCEF TC β Discussion

  17. Strong evidence for the existence of nodes in the gap function • The increase in ΔCEF is responsible for the decrease in TC . isotropic gap RDOS PrRu4Sb12(s-wave) PrOs4Sb12 Pr(Os1-xRux)4Sb12 node in gap function Summary • Finite DOS at the Fermi level increases as Os atoms are replaced by Ru atoms.

  18. Discussion : Calculated results for the anisotropic gaps Ref : S.Schmitt-Rink , K.Miyake et al.PRL. 57(1986) 2575

  19. melt point (K) 3793 Pr 3306 Os Ru 2607 Sb 903.78 Introduction : Sb-flux method electric furnace Pr , Os , Ru as solute Sb as flux Pt melting pot High temperature cool down slowly Electric furnace:電気炉 Melting pot:るつぼ Sample separates out

  20. 1/T1 measurement ~0.8MHz 123Sb 121Sb FWHM~0.5MHz 49.9MHz FWHM:半値幅

  21. Experiments : Temperature dependence of 1/T1 (Long component) Above TC X=0.1, 0.2 : PrRu4Sb12 - like behavior

More Related