Data mining vs visualization
Download
1 / 17

Data Mining VS Visualization - PowerPoint PPT Presentation


  • 94 Views
  • Uploaded on

Data Mining VS Visualization. Santiago González Tortosa <[email protected]>. Contents. Data Mining VS Visualization Visualize to DM DM to Visualize ( to DM ) Real world work : Global Behavior Modeling : A New approach to Grid autonomic management.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Data Mining VS Visualization' - tamar


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Data mining vs visualization

Data Mining VS Visualization

Santiago González Tortosa

<[email protected]>


Contents
Contents

  • Data Mining VS Visualization

  • Visualizeto DM

  • DM toVisualize (to DM)

  • Real worldwork:

    • Global BehaviorModeling: A New approachtoGridautonomicmanagement


Data mining vs visualization1
Data Mining VS Visualization

  • Data Mining

    • Knowledgediscovery and extration

    • Notalwaysiseasytoseepatterns, distributions, etc.

  • Visualization

    • Represents data (2D, 3D, Virtual Reality,…)

    • Helpstoextractpatterns

    • Notalwaysiseasytorepresent data in 2 or 3 dimensions


Visualize to dm
Visualizeto DM

  • Visualizationhelpustoextractanypattern in the data


Visualize to dm1
Visualizeto DM

  • Visualizationhelpustoextractanypattern in the data


Dm to visualize
DM toVisualize

  • Data contains N (> 3) features

    • Curse of Dimensionality

  • Wewanttovisualizeall data

  • DimensionalityReduction

    • Reduce number of features

    • Transform and create new features


Dm to visualize1
DM toVisualize

  • DimensionalityReduction

    • L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. DimensionalityReduction: A ComparativeReview. TilburgUniversityTechnicalReport, TiCC-TR 2009-005, 2009

  • Convextechniques: optimizeanobjective function that does not contain any local optima

  • Nonconvextechniques: optimizeobjective functions that do contain local optima


Dm to visualize2
DM toVisualize

  • Optimizationtechniques (hillclimbing, evolutive, etc.)


Dm to visualize3
DM toVisualize

  • Optimizationtechniques

    • Oneobjective

    • Oneobjectivewithconstraints (Semi-Supervisedand labeling)

    • Multiobjective


Dm to visualize4
DM toVisualize

  • Example: Optimize axis


Dm to visualize5
DM toVisualize

  • DimensionalityReduction in 2 phases:

    • FSS: FeatureSubsetSelection (wrapper, needed CLASS!)

    • Transformation and creation of new features (f.e. PCA)


Dm to visualize6
DM toVisualize

  • Example of DimensionalityReduction in 2 phases

    • Userexpertinteracts


Dm to visualize7
DM toVisualize

  • DM toVisualize….to DM!!

  • The idea istoobtain new knowledgeorpatternsviewingthe data.

    • Supervisedinfo: data withthesameclass are represented in thesamearea (KNN).

    • Unsupervisedinfo: data isagrouped


Dm to visualize8
DM toVisualize

  • Examplethatsome data isagrouped


Dm to visualize9
DM toVisualize

  • Visualization

    • 2D and 3D visualization

    • Virtual Reality

      • Inmersion

      • Interaction

      • Imagination

    • AugmentedReality


Real world work
Real worldwork

Global BehaviorModeling: A New approachtoGridautonomicmanagement

Jesus Montes <[email protected]>


Data mining vs visualization2

Data Mining VS Visualization

Santiago González Tortosa

<[email protected]>


ad