Bayesian inference
Download
1 / 56

Bayesian Inference - PowerPoint PPT Presentation


  • 126 Views
  • Uploaded on

Bayesian Inference. Will Penny. Wellcome Centre for Neuroimaging, UCL, UK. SPM for fMRI Course, London, October 21st, 2010. What is Bayesian Inference ?. (From Daniel Wolpert). Bayesian segmentation and normalisation. realignment. smoothing. general linear model. Gaussian

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Bayesian Inference' - talon-franklin


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Bayesian inference

Bayesian Inference

Will Penny

Wellcome Centre for Neuroimaging, UCL, UK.

SPM for fMRI Course,

London, October 21st, 2010


What is Bayesian Inference ?

(From Daniel Wolpert)


Bayesian segmentation

and normalisation

realignment

smoothing

general linear model

Gaussian

field theory

statistical

inference

normalisation

p <0.05

template


Bayesian segmentation

and normalisation

Smoothness

modelling

realignment

smoothing

general linear model

Gaussian

field theory

statistical

inference

normalisation

p <0.05

template


Bayesian segmentation

and normalisation

Smoothness

estimation

Posterior probability

maps (PPMs)

realignment

smoothing

general linear model

Gaussian

field theory

statistical

inference

normalisation

p <0.05

template


Bayesian segmentation

and normalisation

Smoothness

estimation

Posterior probability

maps (PPMs)

Dynamic Causal

Modelling

realignment

smoothing

general linear model

Gaussian

field theory

statistical

inference

normalisation

p <0.05

template


Overview
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


Overview1
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference



Prior
Prior

Model:

Prior:


Prior1
Prior

Model:

Prior:

Sample curves from prior (before observing any data)

Mean curve


Priors and likelihood
Priors and likelihood

Model:

Prior:

Likelihood:


Priors and likelihood1
Priors and likelihood

Model:

Prior:

Likelihood:


Posterior after one observation
Posterior after one observation

Model:

Prior:

Likelihood:

Bayes Rule:

Posterior:


Posterior after two observations
Posterior after two observations

Model:

Prior:

Likelihood:

Bayes Rule:

Posterior:


Posterior after eight observations
Posterior after eight observations

Model:

Prior:

Likelihood:

Bayes Rule:

Posterior:


Overview2
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference



Posterior probability maps

q

Smooth Y(RFT)

prior precision

of GLM coeff

prior precision

of AR coeff

aMRI

Observation

noise

GLM

AR coeff

(correlated noise)

ML

Bayesian

observations

Posterior Probability Maps


ROC curve

Sensitivity

1-Specificity


Posterior probability maps1

Display only voxels that exceed e.g. 95%

activation threshold

Probability mass p

Posterior density

probability of getting an effect, given the data

mean: size of effectcovariance: uncertainty

Posterior Probability Maps

Mean (Cbeta_*.img)

PPM (spmP_*.img)

Std dev (SDbeta_*.img)


Overview3
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


SPC

V1

V5

Dynamic Causal Models

Posterior Density

Priors

Are

Physiological

V5->SPC


Overview4
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


Model evidence

Bayes Rule:

normalizing constant

Model Evidence

Model evidence


SPC

V1

V5

SPC

V1

Model

Model

Evidence

Prior

Posterior

V5

Bayes factor:

Model, m=j

Model, m=i


Model

Model

Evidence

Prior

Posterior

Bayes factor:

For

Equal

Model

Priors


Overview5
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


Bayes Factors versus p-values

Two sample t-test

Subjects

Conditions


p=0.05

Bayesian

BF=3

Classical


BF=20

Bayesian

BF=3

Classical


p=0.05

BF=20

Bayesian

BF=3

Classical


p=0.01

p=0.05

BF=20

Bayesian

BF=3

Classical



Overview6
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


Free energy optimisation
Free Energy Optimisation

Initial Point

Precisions, a

Parameters, q


Overview7
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


u2

u2

x3

x3

x2

x2

x1

x1

u1

u1

incorrect model (m2)

correct model (m1)

m2

m1

Figure 2


LD

LD|LVF

LD|RVF

LD|LVF

LD

LD

RVF

stim.

LD

LVF

stim.

RVF

stim.

LD|RVF

LVF

stim.

MOG

MOG

MOG

MOG

LG

LG

LG

LG

FG

FG

FG

FG

m2

m1

Models from

Klaas Stephan



Gibbs sampling
Gibbs Sampling

Initial Point

Frequencies, r

Stochastic Method

Assignments, A


log p(yn|m)

Gibbs

Sampling


LD

LD|LVF

LD|RVF

LD|LVF

LD

LD

RVF

stim.

LD

LVF

stim.

RVF

stim.

LD|RVF

LVF

stim.

MOG

MOG

MOG

MOG

LG

LG

LG

LG

FG

FG

FG

FG

m2

m1

11/12=0.92


Overview8
Overview

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


Ppms for models

Log-evidence maps

subject 1

model 1

subject N

model K

Compute log-evidence for each model/subject

PPMs for Models


Ppms for models1

Log-evidence maps

subject 1

model 1

subject N

model K

Probability that model k generated data

Compute log-evidence for each model/subject

PPMs for Models

BMS maps

PPM

EPM

Rosa et al Neuroimage, 2009


Computational fmri harrison et al in prep
Computational fMRI: Harrison et al (in prep)

Long

Time

Scale

Short

Time Scale

Frontal cortex

Primary visual cortex


Non-nested versus nested comparison

For detecting model B:

Non-nested:

Compare model A

versus model B

Nested:

Compare model A

versus model AB

Penny et al, HBM,2007


Double dissociations
Double Dissociations

Long

Time

Scale

Short

Time Scale

Frontal cortex

Primary visual cortex


Summary
Summary

  • Parameter Inference

    • GLMs, PPMs, DCMs

  • Model Inference

    • Model Evidence, Bayes factors (cf. p-values)

  • Model Estimation

    • Variational Bayes

  • Groups of subjects

    • RFX model inference, PPM model inference


ad