Equation of State and Viscosities from a Gravity Dual (AdS/QCD)

1 / 23

# Equation of State and Viscosities from a Gravity Dual (AdS/QCD) - PowerPoint PPT Presentation

Equation of State and Viscosities from a Gravity Dual (AdS/QCD). B. Kämpfer. Helmholtz-Zentrum Dresden-Rossendorf Technische Universität Dresden. viscosity is important for flow pattern and splashes. water:. Bulk Viscosity Could Matter. Dusling, Schafer, PRC 85 (2012) 044909.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Equation of State and Viscosities from a Gravity Dual (AdS/QCD)' - talmai

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Equation of State and Viscosities

B. Kämpfer

Helmholtz-Zentrum Dresden-Rossendorf

Technische Universität Dresden

viscosity is important

for flow pattern and splashes

water:

Bulk Viscosity Could Matter

Dusling, Schafer, PRC 85 (2012) 044909

48

Bulk Viscosity Matters

Bulk Viscosity Can Matter

Basar, Kharzeev, Skokov, PRL 109 (2012) 202303

Tuchin, arXiv:1301.0099

coupling of conformal anomaly to photons

 solution of photon-v2 puzzle?

data: PHENIX

PRL 109 (2012) 122302

Compilation of Lattice Results & QPM

Bluhm et al., PLB 709 (2012) 77, PRC 84 (2011) 025201

(1) EoS

(2) relaxation time

a = 3.78, b = - 0.3

5D Riemann: x,z 4D Minkowski: x

semi-class. gravity strongly coupled gauge theo.

X(x, z) gauge-inv. Operators (x)

black brane: T (Hawking)

s (Bekenstein)

semi-class. functional correlation functions

breaking conf. sym. by

mass scale, e.g. dilation

+ potential

gravity setup

Einstein - Hilbert

metric ansatz (Riemann)

Gubser et al. PRL 101 (2008) 131601, PRD 78 (2008) 086007

0

U = V / (3 V‘)

Bekenstein

Hawking

 EoS

bottom-up approach: EoS (lattice QCD)  dilaton potential

ansatz: Gubser type pot.

+ polynom. distortions

T/Tc vs. TL:

from T(s/T^3)

min. or turning

G5: from s/T^3

consistent with Boyd et al., NPB 469 (1996) 419

bulk viscosity

Gubser et al., JHEP 0808 (2008) 085

different formulation:

Eling, Oz, JHEP 1106 (2011) 007

cf. Buchel, Gursoy, Kiritsis, JHEP 1109 (2011) 095

0

shear viscosity is independent of V

KSS, JHEP 0310 (2003) 064

Policastro, Son, Starinets, PRL 87 (2001) 081601

benefit: w/o further input  spectral functions

 transport coefficients

as in QPM (Bluhm et al.)

bulk viscosity is not universal (as, e.g. shear viscosity/entropy)

 sensitive dependence on pot. parameters

including quarks: what is the right EoS?

R.R. Caldwell, S.S. Gubser, DOI: 10.1103/PhysRevD.87.063523

Bazavov et al., PRD 80 (2009) 014504

Borsanyi et al., JHEP 1011 (2010) 077

u,d,s,g

if

would be the same  same V

meson in vector channel

Abelian field strength of V

soft-wall model:

Cui. Takeuchi, Wu, 1112.5923

(T in GeV)

mass shift

JHEP 1204 (2012) 144

Schwarzschild BH  Reissner-Nordstrom BH: chem. pot.

AdS/QCD, soft-wall model, Colangelo, Giannuzzi, Nicotri, 1201.1564, JHEP 1205 (2012) 076

vision: beyond soft-wall ansatz  dilaton consistent with EoS

problem: missing unique QCD results with quarks

Summary

after precise adjustment of EoS at lattice data

Outlook

spectral functions & medium on equal footing

 beyond soft-wall models

temperature dependence of eta/s

 beyond Einstein-Hilbert action

mu > 0  CEP:

Cremonini, Gursoy, Szepietowski,

JHEP 08 (2012) 167

DeWolfe, Gubser, Rosen, PRD 83 (2011) 086005,

PRD 84 (2011) 126014

Retro: Common Work with K. Redlich

Hentschel, BK, Pavlenko, Redlich, Soff, Z. Phys. C75 (1997) 333

Bluhm, BK, Redlich, PLB 709 (2012) 77

PRC 84 (2011) 025201

NPA 830 (2009) 737