1 / 38

Bounds on Neutrino Non-Standard Interactions

Bounds on Neutrino Non-Standard Interactions. Enrique Fernández-Martínez MPI für Physik Munich Based on collaborations with: S. Antusch , J. Baumann, C. Biggio , M. Blennow , B. Gavela and J. López Pavón. Introduction : NSI. Generic new physics affecting n oscillations can be

sward
Download Presentation

Bounds on Neutrino Non-Standard Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bounds on Neutrino Non-Standard Interactions Enrique Fernández-Martínez MPI fürPhysik Munich Based on collaborations with: S. Antusch, J. Baumann, C. Biggio, M. Blennow, B. Gavela and J. LópezPavón

  2. Introduction: NSI Generic new physics affecting n oscillations can be parameterized as 4-fermion Non-Standard Interactions: Production or detection of a nbassociated to a la So that n +na→p+lb p → m +na Y. Grossman hep-ph/9507344

  3. Directboundsonprod/detNSI From m, b, p decays and zero distance oscillations Bounds order ~10-2 C. Biggio, M. Blennow and EFM 0907.0097

  4. Introduction: NSI Non-Standard n scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions: so that na→nbin matterf = e, u, d

  5. DirectboundsonmatterNSI If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607

  6. Gauge invariance However is related to by gauge invariance and very strong bounds exist • → e g • m→ e in nucleai • t decays S. Bergmann et al. hep-ph/0004049 Z. Berezhiani and A. Rossihep-ph/0111147

  7. LargeNSI? • We search for gauge invariant SM extensions satisfying: • Matter NSI are generated at tree level • 4-charged fermionops not generated at the same level • No cancellations between diagrams with different messenger particles to avoid constraints • The Higgs Mechanism is responsible for EWSB S. Antusch, J. Baumann and EFM 0807.1003 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  8. LargeNSI? At d=6 only one direct possibility: charged scalar singlet M. Bilenky and A. Santamariahep-ph/9310302

  9. LargeNSI? Since lab= -lbaonly emm, emtand ett≠0 Very constrained: • m → e g • m decays • decays • CKM unitarity F. Cuypers and S. Davidsonhep-ph/9310302 S. Antusch, J. Baumann and EFM 0807.1003

  10. SSB SSB LargeNSI? At d=6indirect way: fermionsinglets A. Broncano, M. B. Gavelaand E. Jenkins hep-ph/0210192

  11. EffectiveLagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality

  12. Effective Lagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality Diagonal mass and canonical kinetic terms

  13. Effective Lagrangian • 3 light n • all unitarity violation from NP withΛ > v • flavour universality Diagonal mass and canonical kinetic terms N is not unitary

  14. ni Z W ni nj la g W la ni lb (NN†) from decays • W decays Info on (NN†)aa • Invisible Z • Universality tests Info on(NN†)ab • Rare leptons decays Afterintegratingout W and Z neutrino NSI induced

  15. Experimentally (NN†)fromdecays E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 S. Antusch, J. Baumann and EFM 0807.1003

  16. Non-Unitarity at a NF Golden channel at NF is sensitive to ete nm disappearance channel linearly sensitive to etm through matter effects Near t detectors can improve the bounds on eteand etm Combination of near and far detectors sensitive to the new CP phases S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 SeealsoEFM, B. Gavela, J. López Pavón and O. Yasudahep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,….

  17. LargeNSI? At d=8 more freedom Can add 2 H to break the symmetry between n and l with the vev There are 3 topologies to induce effective d=8 ops with HHLLfflegs: -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147; S. Davidson et al hep-ph/0302093

  18. LargeNSI? We found three classes satisfying the requirements:

  19. LargeNSI? We found three classes satisfying the requirements: Just contributes to the scalar propagator after EWSB Same as the d=6 realization with the scalar singlet 1 v2/2

  20. LargeNSI? We found three classes satisfying the requirements: The Higgs coupled to the NR selects n after EWSB 2 -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147 S. Davidson et al hep-ph/0302093

  21. LargeNSI? But can be related to non-unitarity and constrained 2

  22. LargeNSI? For the matter NSI Where is the largest eigenvalue of And additional source, detector and matter NSI are generated through non-unitarityby the d=6 op

  23. LargeNSI? We found three classes satisfying the requirements: Mixed case, Higgs selects one n and scalar singlet S the other 3

  24. LargeNSI? Can be related to non-unitarity and the d=6antisymmetric op 3

  25. LargeNSI? At d=8 we found no new ways of selecting n The d=6 constraints on non-unitarity and the scalar singlet apply also to the d=8 realizations What if we allow for cancellations among diagrams? S. Antusch, J. Baumann and EFM 0807.1003 Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  26. NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennow and EFM 0902.0607

  27. NSI in loops • The loop contribution is a quadratic divergence • The coefficient k depends on the full theory completion • If no new physics below NSI scale L=M • Extra fine-tuning required at loop level to have k=0 or loop contribution dominates when1/16p2> v2/M2 C. Biggio, M. Blennow and EFM 0902.0607

  28. Conclusions • Models leading “naturally” to NSI imply: • O(10-2-10-3) bounds on the NSI • Relationsbetweenmatter and production/detectionNSI • ProbingO(10-3) NSI at future facilities very challenging but not impossible, near detectors excellent probes • Saturating the mild model-independent bounds on matter NSI and decoupling them fromproduction/detectionrequiresstrong fine tuning

  29. NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennowand EFM 0902.0607

  30. NSI in loops Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennowand EFM 0902.0607

  31. NSI in loops These loops are related by gauge invariance: Used to set loop bounds on eemthrough the log divergence However the log cancels when adding the diagrams… + C. Biggio, M. Blennowand EFM 0902.0607

  32. NSI in loops The loop contribution is a quadratic divergence The coefficient k depends on the full theory completion: • Without cancellations k  O(1) • At least L MW→old bounds are recovered eem< 8·10-4 • If no other new physics L=M→ NSI = 4CF if 1/16p2 > v2/M2 • Allowing cancellations also at loop level k = 0 • Only direct 0.1 bound on eem C. Biggio, M. Blennowand EFM 0902.0607

  33. LargeNSI? General basis for d=8 ops. with two fermions and two H 2 left + 2 right 4 left Z. Berezhiani and A. Rossihep-ph/0111147 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  34. LargeNSI? To cancel the 4-charged fermion ops: but and NR scalarsinglet NR NR after a Fierztransformation

  35. LargeNSI? There is always a 4 charged fermion op that needs canceling Toy model Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

  36. Type I seesaw Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic, … NRfermionicsinglet Type III seesaw Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al., Dorsner, Fileviez-Perez SRfermionictriplet Othermodelsfornmasses Type II seesaw Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle, … Dscalartriplet

  37. non-unitarymixing in CC • FCNC forn Type I: • non-unitarymixing in CC • FCNC forn • FCNC forchargedleptons Type III: • LFV 4-fermions • interactions Type II: Different d=6 ops A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 TypesII and III induce flavourviolation in thechargedlepton sector Strongerconstraintsthan in Type I

  38. Lowscaleseesaws The d=5 and d=6 operators are independent Approximate U(1)L symmetry can keep d=5 (neutrino mass) small and allow for observable d=6 effects Seee.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 Inverse (Type I) seesaw Type II seesaw L= 1 -1 1 m<< M Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle,… Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu, Santamaría, Vidal, Mendez, González-García, Branco, Grimus, Lavoura, Kersten, Smirnov,….

More Related