1 / 45

From Solar Neutrinos to B Physics : Flavor Oscillations at SNO and CDF

From Solar Neutrinos to B Physics : Flavor Oscillations at SNO and CDF. Peter Wittich University of PA March 1, 2002. What ties these two experiments together?. At the base, the same physics!. Flavor Oscillations. Wolfenstein: CKM. PDG “standard”: MNS. Solar Neutrino Problem. Solar Model.

summer
Download Presentation

From Solar Neutrinos to B Physics : Flavor Oscillations at SNO and CDF

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF Peter Wittich University of PA March 1, 2002 P. Wittich

  2. What ties these two experiments together? At the base, the same physics! P. Wittich

  3. Flavor Oscillations Wolfenstein: CKM PDG “standard”: MNS P. Wittich

  4. Solar Neutrino Problem Solar Model Experiments Bahcall Spectra Most plausible solution: flavor oscillations in n’s P. Wittich Bahcall

  5. SNO Detector 2039 m underground1 in Sudbury, Ontario, in INCO's Creighton Mine #9 Penn Electronics Control Room ~ 10,000 PMTs on 16.8 m support (LBL!) 1 kT virgin D2O 7 kT H2O, ultrapure Urylon liner 1 6000 mwe P. Wittich

  6. SNO Collaboration S. Gil, J. Heise, R.L. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia J. Boger, R.L. Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory R.C. Allen, G. Bühler,H.H. Chen* University of California at Irvine I. Blevis, F. Dalnoki-Veress, J. Farine, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, H. Mes, C. Mifflin, A.J. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, M. Starinsky Carleton University G. Milton, B. Sur Chalk River Laboratories T.C. Andersen, K. Cameron, M.C. Chon, P. Jagam, J. Karn, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang Univeristy of Guelph J. Bigu, J.H.M. Cowan, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert,R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, A. Schuelke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Lab T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K. Frame, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCauley, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R.K. Taplin, P. Thornewell,M. Thorman, P.T. Trent, D.L. Wark, N. West, J. Wilson University of Oxford E.W. Beier, D.F. Cowen, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L. Rusu, R.G. Van de Water,R. Van Berg, P. Wittich University of Pennsylvania R. Kouzes, M.M. Lowry Princeton University E.Bonvin, M.G. Boulay, Y. Dai, M. Chen, E.T.H. Clifford, , F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, R. Heaton, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. MacDonald,W. McLatchie, B.A. Moffat, B.C. Robertson, T.J. Radcliffe, P. Skensved Queen's University Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. MeijerDrees, J.L. Orrell, R.G.H. Robertson,K.K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson University of Washington *Deceased P. Wittich

  7. Accl. 10-2 - 101 Reactor 100-102 Atmos. 102-104 In matter: Solar 1010-1011 Supernova 1019-1020 Neutrino oscillations • Recall (vacuum, two family): Mixing angle L/E determines experimental sensitivity. Typical L/E (L:m, E: MeV) P. Wittich

  8. Þ ne only n + Þ + + - CC d p p e e • Good measurement of ne energy spectrum • Weak directional sensitivity1-1/3cosq Þ n + Þ + + n NC Equal cross section for allntypes d p n x x • Measure total 8B n flux from the sun. Þ ES Allntypesbut enhanced sensitivity tone - - + Þ + ν e ν e x x • Low Statistics • Strong directional sensitivity SNO n reactions Significant with SuperK Smoking Gun, model independent P. Wittich

  9. SNO Run Sequence Neutron Detection Method Capture on D Capture on Cl Capture on 3He Event-by-event separation of CC and NC events The Three Phases • Pure D2O • Good CC sensitivity • Added Salt in D2O • Enhanced NC sensitivity • Neutral Current Detectors • 3He proportional counters in the D2O completed*** 1 n d  t g …  e (Eg = 6.3 MeV) in progress 2 n35Cl 36Cl g …  e (Eg = 8.6 MeV) future 3 n3He  p  t P. Wittich

  10. NC Salt (BP98) Signals in SNO SNO MC assuming BP98 solar model (no oscillations) Counts in D2O/year/hit pmt Hit PMT’s (~Ee) P. Wittich

  11. SNO: Handles ES SNO GOAL:CC/NC ratio is a direct signature for oscillations. ES: SK, SNO In addition: • Charged current energy response leads to good sensitivity to spectral distortions. • ES: ne washed out (SK) • CC: need lots of statistics (>>1year) • NC background to CC spectrum CC P. Wittich

  12. Neutrino Candidate P. Wittich

  13. SNO Results from Phase 1: Analysis outline • Calibration • Data reduction • Final Fit • Physics results: • CC flux (CC/ES ratio) • More soon: • Day/night, NC in D2O P. Wittich

  14. ExtractingSignals in Phase 1 Three signals, three handles Energy Distribution Radial Distribution Solar Direction Distribution Extended maximum likelihood fits amplitudes P. Wittich

  15. SNO measurements: • CC (8B) = 1.75 ± 0.07 ± 0.05 • (stat) (sys.) (theor) • ES (8B) = 2.39 ± 0.34 • (stat) (sys.) +0.12 - 0.11 +0.16 - 0.14 SNO result: CC flux (Units of 106/cm2/sec) NB: SNO CC flux < SNO ES flux (1.6 s). Also, SNO CC < SK ES (3.3 s)  SNP: ne nm,t Ratio of FCC to BPB01 = 0.347± 0.029 P. Wittich

  16. Implications: SNO Results To Active Neutrinos To Sterile Neutrinos sterile neutrino solutions strongly disfavored P. Wittich

  17. LSND Dm2 ~ 1 eV2 Sterile? ( ) Neutrino oscillations: evidence roundup • Atmospheric • (SuperK) • Dm2 ~ 310-3 eV2 • sin22q ~ 1 • Oscillation to ns disfavored at 99%CL • Solar • (SuperK ES, SNO CC) • Dm2 ~ 10-4 - 10-12 eV2 • sin22q - LMA  large • CCSNO/ESSK 3.3s. P. Wittich

  18. Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Further off… CP violation in MNS? Longer ways away… What about q13? What’s next for n’s Address extra-terrestrial evidence with terrestrial experiments…. • Solar neutrinos • SNO NC/CC in D2O, day/night • Borexino 7Be P. Wittich

  19. Minos Sensitivity Study q23 (atmospheric nu’s) 10 kT-years exposure Null hypothesis (no osc.) P. Wittich NUMI public pages

  20. Kamland Solar LMA in reach • Reactor with very long baseline • (Solar too…) From Kamland-US proposal. P. Wittich

  21. MiniBooNE Sensitivity to LSND In two years, MiniBooNe can exclude the LSND region. Start taking data this year preliminary P. Wittich

  22. Borexino public pages Borexino Measure 7Be solar nu’s  Esp. sensitive to SMA Data taking 5/2002 P. Wittich

  23. Muon systems CDF II Central calorimeter Solenoid Plug calorimeter Substantial upgrades from Run I detector, of relevance for B physics Time-of-Flight Drift chamber Silicon tracker P. Wittich

  24. Oscillation in Quarks • CKM describes quark mixing • Also sensitive to ‘new physics’ What can you do at CDF (since we have B factories)? • Access to other modes, such as Bs • High sbbar(ppbar)~ 100 mb • This comes at considerable cost… • Disadvantages: • High backgrounds, coupled with low branching fractions, make interesting data hard to trigger on • Need an effective B trigger. • CDF eD2 low compared to B factories ( ~11% Run II estimate, rather than ~26% at BaBar) • Better particle ID CDF’s B program complementary P. Wittich

  25. Dms: motivation By measuring Dms, we can get at Vtd: s s s s Information about one side of triangle. P. Wittich

  26. How to measure Dms Oscillation probability: Determine the oscillation as a function of proper decay time: P. Wittich

  27. How to measure Dms, cont’d • Find decay into favorite mode • Determine meson type at creation • Measure proper decay length • Count oscillated vs non-oscillated as f(t) Flavor tagging P. Wittich

  28. Sensitivity • For CDF, D2 small (~5% Run I, ~11% Run II exp.) • Need large statistics (and/or good trigger) Effect: ND2N accurate estimate of decay length crucial fully reconstructed modes: sp  negligible P. Wittich

  29. Dms sensitivity: what matters? • For fast oscillations: • Proper time resolution • Dilution • Momentum resolution • Fully reconstructed modes Run I study for partially reconstructed mode: P. Wittich

  30. In Run II, CDF triggers on displaced tracks in trigger: exploit long B lifetimes. Ideal for enriched hadronic B samples (cf Run I) CDF II: SVT trigger It works! P. Wittich

  31. SVT, continued • Reconstructed with quantities available in the trigger • To do: • SVX coverage • L00 • SVT optimization P. Wittich

  32.  Determine the initial flavor of the B0s Flavor Tagging Opposite side tags • SLT: 1.7% • JetQ: 3.0% • OSK: 2.4% (RunII est) Run I Same side tags - TOF new to RunII P. Wittich

  33. Tagging w/TOF: SSK • TOF: • 2s K/p separation for p < 1.6 GeV • With COT dE/dx, stat separation • K vs p? 1.0% 4.2% with TOF P. Wittich

  34. Some numbers: estimated Bs yield • Br(B0s D+sp+)= 3 x 10-3 • Br(D+s fp+)x Br(fK+K-)=1.8% Therefore, the total usable Bf Bftot~5.4 x 10-6. s(B0s) ~ 20 mb eaBftots(B0s) ~ 5 pb-1. Assuming full coverage, perfect reco, …, 5 Bs decays to tape per pb-1 P. Wittich

  35. Shutdown Delivered To tape Run II so far Oct Jul Jan • L ~ 1.0 x 1031 sec-1 at beginning of store. • FNAL BD: 50pb-1 delivered by Summer 2002 • CDF efficiency still needs work… • Not a lot of Bs to tape yet P. Wittich

  36. Reach for Run II: 50 pb-1 and 2 fb-1 • For Run IIa (2 fb-1): • Expect ~ 10,000 Bs decays • For Summer 2002: 50 pb-1 • Expect ~250 Bs on tape  Even this is a bit optimistic … Time well spent tuning detector and analysis… P. Wittich

  37. Current Status: Getting ready • B lifetime study: precursor • Study of detector resolution (cf. Run I) P. Wittich

  38. In Summary: MNS vs CKM Lots to do in both fields in the near future… P. Wittich

  39. SNO calibrations • Electronics Calibration • q, t pedestals, discriminator walks & thresholds, TAC slopes • Optical Calibration • Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm) • Attenuation, Reflection, Scattering, PMT relative QE • Energy Calibration • 16N  6.13 MeV  (also good for pointing) • p,T  19.8 MeV ’s (high E calibration point) • neutrons  6.25 MeV  (NC response - bkgnd CC) • 8Li   spectrum (CC also good for vertexing) • Low Energy Backgrounds • Encapsulated Th and U sources P. Wittich

  40. Signal Distributions • Signal Distributions Radial Distribution Solar Direction Distribution P. Wittich

  41. Signal Extraction • Systematic Uncertainties • Error Source • Energy scale • Energy resolution • Non-linearity • Vertex shift • Vertex resolution • Angular resolution • High Energy ’s • Low energy background • Instrumental background • Trigger efficiency • Live time • Cut acceptance • Earth orbit eccentricity • 17O, 18O • Experimental uncertainty • Cross-section • Solar Model CC error (%) -5.2, +6.1 ±0.5 ±0.5 ±3.1 ±0.7 ±0.5 -0.3, +0.0 0.0 -0.2, +0.0 0.0 ±0.1 -0.6, +0.7 ±0.2 0.0 -6.2, +7.0 3.0 -16, +20 • ES error (%) • -3.5, +5.4 • ±0.3 • ±0.4 • ±3.3 • ±0.4 • ±2.2 • -1.8, +0.0 • 0.0 • -0.5, +0.0 • 0.0 • ±0.1 • -0.6, +0.7 • ±0.2 • 0.0 • -5.7, +6.8 • 3.0 • -16, +20 From varying pdfs by MC vs. calibration differences P. Wittich

  42. Current direct n mass limits What about other n physics? • Atmospheric n’s: mixing to active flavors established by SuperK at 10s. • LSND - sterile neutrinos suggested, disfavored by solar and atmospheric data - miniBoone • 0nbb - test for Majorana masses Recent controversial claims of evidence… P. Wittich

  43. 0nbb hep-ph/0201231 P. Wittich

  44. Current limits in r-h plane Dms : limits only… Dmd: B0 osc eK from Kaons hep-ph/0201071 Vub, Vcb from other B decays Babar, Belle P. Wittich

  45. Current limits on Dms LEPBOSC results from CKM workshop 2/2002 P. Wittich

More Related