1 / 32

G ruppo di A strodinamica dell’ U niversità degli S tudi “la S apienza”

FUNDAMENTAL PHYSICS IN SPACE WITH SMALL PAYLOADS (FPS-06) Laboratori Nazionali di Frascati dell’INFN March 21-23, 2006. G ruppo di A strodinamica dell’ U niversità degli S tudi “la S apienza”. UNISAT SATELLITES F. Graziani, F. Santoni, F. Piergentili,

steel-rivas
Download Presentation

G ruppo di A strodinamica dell’ U niversità degli S tudi “la S apienza”

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FUNDAMENTAL PHYSICS IN SPACE WITH SMALL PAYLOADS (FPS-06) Laboratori Nazionali di Frascati dell’INFN March 21-23, 2006 Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza” UNISAT SATELLITES F. Graziani, F. Santoni, F. Piergentili, M. Agostinelli, M. L. Battagliere, F. Bulgarelli, M. Ronzitti, M. Sgubini SCUOLA DI INGEGNERIA AEROSPAZIALE UNIVERSITA’ DI ROMA “LA SAPIENZA”

  2. Contents • The UNISAT program aims • Spacecraft design, manufacturing, testing, launch, operations • Results of UNISAT-3 at 21 months from launch • UNISAT- 4 scheduled for launch in June 2006 • Examples of technological and scientific payloads Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”

  3. Shinichi Nakasuka Department of Aeronautics and Astronautics University of Tokyo Small Satellites for Space Education • Practical Training of Whole Cycle of Space Development • – Mission conceptualization, satellite design, fabrication, ground test, modification launch and operation • – Know what is important and what is not. • Importance for Engineering Education • – Synthesis (Not Analysis) of an effective system • – Feedbacks from the real world to evaluate design, test, etc. • Education of Project Management • – Four Managements: time, human resources, cost and risk • – Team work, conflict resolution • – Effective discussion, documentation • – International cooperation, negotiation, mutual understanding

  4. Small Satellites for Space Research • Reduction of space mission cost using • Commercial Off The Shelf (COTS) components • Reduction of time from space mission concept to launch • (typical time required: 2 years) • Technology: test in orbit of state of the art technology • Science: small scientific payloads

  5. UNISAT program microsatellites UnisatSeptember 26, 2000 Unisat-2 December 20, 2002 Unisat-3June 29, 2004 Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”

  6. UNISAT-3 - Sheet • Mission  Microsatellite Weight 10 kg Circular Orbit (Sunsynchronous , 750 km height) • Structure  Geometry: octagonal prism (150mm side; 250mm height) Materials: Al + Al-Al sandwich • Attitude  Passive magnetic • Power  - Si and triple-junction solar cells - NiCd Batteries • TLC  VHF (145 MHz) uplink; UHF (436 MHz) downlink; 9600 bps; Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”

  7. Passive magnetic attitude stabilization • A permanent magnet installed on the satellite follows the Earth magnetic field lines • Accuracy on the order of 10° • Low cost • No software development

  8. UNISAT-3 block diagram Communication Antenna MODEM+HDLC Protocol RS-232 9600 bps Transmitter UHF Telemetry CPU Tone Decoder Receiver VHF Payloads

  9. UNISAT-3 electronic boards

  10. UNISAT - 3 Terrestrial Si Solar Arrays Terrestrial Si solar cell Lateral solar panels Upper solar panel

  11. Low Grade 3J (21%) and Space Qualified Si (15%) Solar Arrays Si Solar Array manufactured by Kiev Polytechnic Institute Triple junction Solar Array

  12. Vibration Test (OCI, Roma)

  13. Vibration test (Dnepropetrovsk)

  14. Separation test (Dnepropetrovsk)

  15. Integration on the DNEPR launcher (Baikonour) UNISAT-3 launch team

  16. UNISAT-3 Launch Launched from Baikonour using DNEPR LV on 29th June 2004 Sunsynchronous Orbit Inclination: 98° Altitude: 710-780 km Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”

  17. DNEPR LV Launch site

  18. San Pietro in Vincoli (SPIV) Ground Station

  19. Ground Station Operation Automation • UNISAT-3 operation required one operator at the ground station 2hr/day at fixed times (sat in view) • Remote operation Internet connection by authorized users (2hr/day in remote location) • Full automatic operation, as programmed by the operator, about 10 min/week Gruppo di Astrodinamica dell’Università degli Studi “la Sapienza”

  20. UNISAT-3 Real timeTelemetry • 3 solar array currents • 3 solar array voltages • 3 solar array temperatures • 3-axes magnetometer measures • Load and Battery currents • Battery Voltage

  21. UNISAT-3 Telemetry Data (2 July 2004) Voltage Data Temperature Data Magnetometer Data Current Data

  22. UNISAT-3 Solar array test results (1)

  23. UNISAT-3 Solar array test results (2)

  24. UNISAT-3 Solar array test results (3)

  25. UNISAT-4 • Mission  Microsatellite Weight 10 kg Circular Orbit (Sunsynchronous , 750 km height) • Structure  Geometry: octagonal prism (150mm side; 250mm height) Materials: Al + Al-Al sandwich • Attitude  Passive magnetic • Power  - Si and GaAs triple-junction solar cells - NiCd Batteries • TLC  VHF (145 MHz) uplink; UHF (436 MHz) downlink; 9600 bps; UNISAT-3 • Payloads  Langmuir Probe (CNR, IFSI)  2 COTS Camera with different resolution  Navigation experiment (GPS)  SIRDARIA (Spacecraft Integrated Re-entry Device Aero-Resistant, Increasing Area)  MPPT (maximum Peak Power Tracking)  COTS Magnetometers  GAUSS integrated Triple Junction Solar arrays

  26. Probes Circuit TPS: Triple Probe System Ionized particles densities are evaluated by voltages and currents among three electrodes exposed to the space plasma

  27. 2 COTS cameras with different resolution • Industrial applications camera • Differrent resolution by appropriate COTS optics • User programmable by simple “High level” visual programming block diagram environment • 6x6 cm size • 50g weight • 1.5W power • FOV and approximate ground resolution at 500 km height F 2,5 mm: FOV 84.6° image size 1000km resolution 1.4 km F 6 mm: FOV 36,8° image size 300km resolution 0.5 km

  28. GPS receiver • Channels 12 • Position accuracy 5m • Velocity accuracy 0.05m/s • Cold Start 120sec (typ) • Serial Interface 19200 bps • Temperature -30° / 70°C • Size 46x71x13 mm • Weight 22g • Power 0.5W • NMEA or binary output format

  29. SIRDARIASpacecraft Integrated Re-entry Device Aero-Resistant, Increasing Area

  30. COTS Fluxgate magnetometer • Temperature -25 : 70 °C • Weight 50 g • Power 200mW • Size 12x2.5 cm • Serial interface • Accuracy 5nT • Alignment 0.2°

  31. Efficiency between 80% and 90% , depending on the working voltage Can recover damages of one or more solar cells in the solar array MPPT (Maximum Peak Power Point Tracking) A)

More Related