1 / 30

Lattice study for penta-quark states

Lattice study for penta-quark states. T. Umeda with T.T.Takahashi,T.Onog,T.Kunihiro (YITP, Kyoto University). hep-lat/0503019. KEK seminar 12/May/2005. Preliminary. T.Nakano et al. (LEPS Collab.) Phys. Rev. Lett. 91 (2003) 012002 Laser-Electron Photon facility @ SPring-8. Contents.

sophie
Download Presentation

Lattice study for penta-quark states

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lattice study for penta-quark states T.Umeda with T.T.Takahashi,T.Onog,T.Kunihiro (YITP, Kyoto University) hep-lat/0503019 KEK seminar12/May/2005

  2. Preliminary T.Nakano et al. (LEPS Collab.) Phys. Rev. Lett. 91 (2003) 012002 Laser-Electron Photon facility @ SPring-8

  3. Contents • Introduction • Lattice study for penta-quarks • Our strategy • Lattice results • Conclusion & Outlook • Some remarks

  4. Introduction • Baryon with Positive strangeness Minimal quark content is 5 quarks • Very narrow width • Mass = 1539.2±1.6MeV (NK ≈ 1435MeV) • Spin & parity are not determined • Existence is not conclusive yet !

  5. Experiments • LEPS Collab. [Phys.Rev.Lett.91(2003)012002] • DIANA Collab. [Phys.Atom.Nucl.66(2003)1715] • CLAS Collab. [Phys.Rev.Lett.91(2003)252001] [Phys.Rev.Lett.92(2004)032001] • SAPHIR Collab. [Phys.Lett.B572(2003)127] • ZEUS Collab. [Phys.Lett.B591(2004)7] • A.E.Asratyan et al. [Phys.Atom.Nucl.67(2004)682] • HERMES Collab. [Phys.Lett.B585(2004)213] • COSY-TOF Collab. [Phys.Lett.B595(2004)127] No Θ+ in high energy experiments ?

  6. Theories Some models • Chiral soliton model (Skyrme model) • Quark model • ... Studies based on QCD • QCD sum rule • Lattice QCD It is possible to study hadrons from first principles.

  7. Lattice studies • F.Csikor et al. [JHEP0311(03)070] [hep-lat/0503012] • S.Sasaki [Phys.Rev.Lett.93(2004)152001] • T.W.Chiu et al. [hep-ph/0403020] • N.Mathur et al. [Phys.Rev.D70(2004)074508] • N.Ishii et al. [Phys.Rev.D71(2005)034001] • B.G.Lasscock et al. [hep-lat/0503008] • C.Alexandrou, A.Tsapalis [hep-lat/0503013] • T.T.Takahashi et al. [hep-lat/0503019]

  8. Lattice studies Hadron spectrum from first principles • dynamical quark effects (Nf=2+1) • infinite volume limit • chiral extrapolation • continuum limit Depending on our purpose we can compromise some of them

  9. Difficulties for Θ+ on the lattice Correlation function of hadronic op. • Θ+is not a lowest-state in this channel we have to extract 2 states at lease • Θ+has the same quantum number as KN states we have to distinguish from KN states • discretized lattice momenta in a finite box dilemma of spatial volume

  10. Our strategy It would be premature to study penta-quarks on lattice quantitatively ! • give up a quantitative study △ course lattice, no cont. limit, quench ○ high statistics (1K~3K confs.) • extract lowest two states using 2x2 correlation matrices • distinguish Θ+ from KN states volume dependence (V=83~163) of mass & spectral weight

  11. Lattice studies

  12. Interpolating operators I=0, J=1/2 channel Nucleon x Kaon operator Penta-quark like operator Same as Csikor et al. (other op.  Some remarks)

  13. Simulation parameters Wilson quark & Plaquette gauge beta=5.7 (a~0.2fm), quenched QCD 83x24 [(1.6fm)3x4.8fm] 3000confs. 103x24 [(2.0fm)3x4.8fm] 2900confs. 123x24 [(2.4fm)3x4.8fm] 1950confs. 163x24 [(3.2fm)3x4.8fm] 950conf. 5 combinations of quark mass = (100~240MeV) (mpi/mrho=0.65~0.85) Done on SX-5 @ RCNP & SR8000 @ KEK

  14. Quality of data (I, JP) = (0, 1/2—)

  15. Quality of data (I, JP) = (0, 1/2—)

  16. Volume dependence (I, JP) = (0, 1/2—)

  17. Volume dependence (I, JP) = (0, 1/2—)

  18. NK scattering state (I, JP) = (0, 1/2—) (1) Naive expectation Nucl. & Kaon with a relative mom. p=2pi/L small/neglegible interaction (1’) Nucleon with non-zero momentum + Kaon with non-zero momentum (2) Effects of interacton Luscher’s formula + scatt. length (exp.)  a few % deviation

  19. Volume dependence (I, JP) = (0, 1/2—)

  20. Volume dependence (I, JP) = (0, 1/2—)

  21. Volume dependence (I, JP) = (0, 1/2—) heavier quark mass smaller error rather compact interaction ? 2nd lowest state may be resonance state !

  22. Spectral weight (I, JP) = (0, 1/2—) overlap of local operator with each state relative wavefunc. between N and K resonance state has small volume dep. volume of the system

  23. Spectral weight (I, JP) = (0, 1/2—) lowest-state expected to be NK scatt. with rela. mom. p=0  1/V dependence 2nd lowest-state expected to be resonance state  no V dependence L=10,12,14 and 16 are used

  24. Positive parity (I, JP) = (0, ½+) (u,d,s)=(240,240,240)MeV N*+K mass spectrum no L dependence far from NK threshold spectral weight 1/V dependence  only scattering state  Small L Large L 

  25. Summary & Conclusion We study a penta-quark state with (I,J)=(0,1/2) Our aim isTheta+ exists or not on the lattice? • extract lowest two states • examine the volume dependence of mass & spectral weight Conclusion: resonance state is likely to exist slightly above the NK threshold in (I,JP)=(0,1/2-)

  26. Future plans • Estimation of the width using level crossing Soft pion theorem + ChPT • Wave function B-S amplitude of KN state • Full QCD simulation using CP-PACS config. Nf=2, cont. limit no volume dep.

  27. _ meff EN-EK boundary condition • Periodic/anti-periodic boundary for quarks • Dirichlet boundary  no problem

  28. Operator dependences • NK like op. (wall source) • Penta like op. (wall source) • NK like op. (point source) • Penta like op. (point source) • Di-quark like op. (point source) small spin&color structure dependence large spatial structure dependence local op. ~ Penta., extended op. ~ NK scatt.

  29. Other studies

  30. Chiral extrapolation MK=0.5001(14) GeV, MN=0.9355(70) GeV MTheta+=1.755(61) GeV (163x24 data, 1/a by Mrho, ms by Kaon)

More Related