Sensors l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 19

Sensors PowerPoint PPT Presentation


  • 88 Views
  • Uploaded on
  • Presentation posted in: General

Sensors. Resistive, Capacitive Strain gauges, piezoresistivity Simple XL, pressure sensor ADXL50 Noise. V x. R 0. R 0. V +. V -. R(x). R 0. Resistive sensors. R(x) = R 0 (1+ a x) E.g. TCR, gauge factor Generate thermal noise Wheatstone bridge minimizes sensitivity to

Download Presentation

Sensors

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Sensors l.jpg

Sensors

  • Resistive, Capacitive

  • Strain gauges, piezoresistivity

  • Simple XL, pressure sensor

  • ADXL50

  • Noise


Resistive sensors l.jpg

Vx

R0

R0

V+

V-

R(x)

R0

Resistive sensors

  • R(x) = R0(1+ax)

    • E.g. TCR, gauge factor

  • Generate thermal noise

  • Wheatstone bridge minimizes sensitivity to

    • Nominal resistance value

    • Power supply variation

    • Other inputs

      • R(x) = R0(1+ax) (1+by)


Capacitive sensors l.jpg

Area (A)

Separation (d)

Capacitive sensors

  • Typically used to measure displacement

  • C ~= e0 A/d

  • Can be used in Wheatstone bridge (with AC excitation)

  • Sensitive to environmental coupling

    • Typically want amplifier very close

    • Typically need to shield other varying conductors

    • Definitely don’t want charge-trapping dielectrics nearby

  • No intrinsic noise


Strain sensors l.jpg

F

F

Strain Sensors

  • Shape change

    • dL/L = e

    • da/a = -ne (Poisson’s ratio)

    • R(a,b,L) = r L/A

    • R(e) = R0(1+(1+2n) e )

    • R(e) = R0(1+G e )

  • Piezoresistive

    • r(e) = r0(1+ GPe )

    • R(e) = R0(1+(GP+G) e )

    • GP ~ -20, 30 (poly), ~100 (SCS)

  • Piezoelectric

    • Strain generates charge, charge generates strain


Simple piezoresistive pressure sensor l.jpg

Simple piezoresistive pressure sensor


Simple piezoresistive accelerometer l.jpg

Simple piezoresistive accelerometer


Simple capacitive accelerometer l.jpg

Simple capacitive accelerometer

  • Cap wafer may be micromachined silicon, pyrex, …

  • Serves as over-range protection, and damping

  • Typically would have a bottom cap as well.

C(x)=C(x(a))

Cap wafer


Simple capacitive pressure sensor l.jpg

Simple capacitive pressure sensor

C(x)=C(x(P))


Adxl50 accelerometer l.jpg

ADXL50 Accelerometer

  • +-50g

  • Polysilicon MEMS & BiCMOS

  • 3x3mm die


Adxl50 sensing mechanism l.jpg

ADXL50 Sensing Mechanism

  • Balanced differential capacitor output

  • Under acceleration, capacitor plates move changing capacitance and hence output voltage

  • On-chip feedback circuit drives on-chip force-feedback to re-center capacitor plates.


Analog devices polysilicon mems l.jpg

Analog Devices Polysilicon MEMS


Adxl50 block diagram l.jpg

ADXL50 – block diagram


Mems gyroscope chip l.jpg

Digital Output

MEMS Gyroscope Chip

Proof Mass

SenseCircuit

Rotation induces Coriolis acceleration

Electrostatic Drive Circuit

J. Seeger, X. Jiang, and B. Boser


Mems gyroscope chip14 l.jpg

1mm Drive

0.01Å Sense

MEMS Gyroscope Chip

J. Seeger, X. Jiang, and B. Boser


Thermal noise l.jpg

Thermal Noise

  • Fundamental limitation to sensor performance due to thermal noise

  • “White” noise, Johnson noise, Brownian motion all the same

    • Not the same as flicker, popcorn, 1/f noise

  • Equipartition theorem (energy perspective)

    • every energy storage mode will have ½ kBT of energy

  • Nyquist (power perspective):

    • Every dissipator will contribute PN = 4 kBT B

    • B = bandwidth of interest in Hz


Equipartition l.jpg

Equipartition

  • ½ kBT = 4x10-21 J @ room temperature (300K)

  • ½ C V2 = ½ kBT

    • C=1pF  Vn = 60uV (RMS value)

  • ½ k x2 = ½ kBT

    • K = 1N/m  xn = 0.06nm

  • ½ m v2 = ½ kBT

    • m = 10-9 kg (~100um cube)  vn = 2x10-6 m/s


Nyquist l.jpg

Nyquist

  • PN = 4 kBT B

  • In a resistor

    • PN = VN2/R = 4 kBT B

    • VN = sqrt(4 kBT R B)

    • = sqrt (4 kBT R) sqrt(B)

    • If R = 1kZ then

    • VN = 4nV/sqrt(Hz) sqrt(B)


Sensor and interface electronics l.jpg

N

m

LNA

ADC

V

Sensor and interface electronics

Analog to Digital

Converter

Low noise

amplifier

measurand

transducer

Filter


Summary l.jpg

Summary

  • Resistive and capacitive sensors most common

  • Sensing, amplification, filtering, feedback on the same chip ~$2

  • Minimum detectable signal limited by thermal noise


  • Login