1 / 47

Többmagos Processzorok (5)

Többmagos Processzorok (5). Sima Dezső 2007 őszi félév. (Ver. 2.1).  Dezső Sima, 2007. 10.3 IBM’s MC processors. 10.3.1 POWER line. 10.3.2 Cell BE. 10.3 IBM’s MC processors. 10.3.1 POWER line. POWER4. 180 nm. 10 /200 1. 130 nm. POWER4+. 11 /200 2. POWER5. 130 nm.

sivan
Download Presentation

Többmagos Processzorok (5)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Többmagos Processzorok (5) Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007

  2. 10.3 IBM’s MC processors • 10.3.1 POWER line • 10.3.2 Cell BE

  3. 10.3 IBM’s MC processors 10.3.1 POWER line • POWER4 180 nm 10/2001 130 nm • POWER4+ 11/2002 • POWER5 130 nm 5/2004 90 nm • POWER5+ 10/2005 65 nm • POWER6 2007

  4. 10.3.1 Evolution of IBM’s major RISC lines Figure: The evolution of IBM’s major RISC lines

  5. 10.3.1 POWER4 (1) Service Processor Core interface Unit (crossbar) Power On Reset Built-In-SelfTest Non-Cacheable Unit MultiChip Module Figure : POWER4 chip logical view [3.6]

  6. 10.3.1 POWER4 (2) Figure: Logical view of the L3 controller [3.5]

  7. 10.3.1 POWER4 (3) Figure: The memory cotroller of the POWER4 [3.5]

  8. 10.3.1 POWER4 (4) Fabric Controller Figure: I/O controller of the POWER4 [3.5]

  9. 10.3.1 POWER4 (5) Figure: POWER4 chip [3.11]

  10. 10.3.1 POWER4 (6) POWER line POWER4 Dual/Quad-Core DC Introduced 10/2001 Technology 180 nm Die size 412 mm2 Nr. of transistors 174 mtrs fc [GHz] 1.3 L2 Size/allocation 1.44 MB/shared Implementation On-chip L3 Size 32 MB Implementation Tags on-chip, data off-chip Mem. contr. Off-chip TDP [W] 115/125 Packaging SCM1/MCM2 Dual threaded Power management L3 impl. Tags on-chip L3 size 32 MB 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

  11. 10.3.2 POWER4+ (1) Figure: New features of the POWER5+ [3.3]

  12. 10.3.1 POWER4+ (2) POWER line POWER4 POWER4+ Dual/Quad-Core DC DC Introduced 10/2001 11/2002 Technology 180 nm 130 nm Die size 412 mm2 380 mm2 Nr. of transistors 174 mtrs 184 mtrs fc [GHz] 1.3 1.7 L2 Size/allocation 1.44 MB/shared 1.5 MB/shared Implementation On-chip On-chip L3 Size 32 MB 32 MB Implementation Tags on-chip, data off-chip Mem. contr. Off-chip On-chip TDP [W] 115/125 70 Packaging SCM1/MCM2 SCM1/MCM2 Dual threaded Power management L3 impl. Tags on-chip L3 size 32 MB 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

  13. 10.3.1 POWER5 (1) Figure 5.14: Contrasting POWER4 and POWER5 system structures [3.1]

  14. 10.3.1 POWER5 (2) Figure: Block diagram of the POWER5 (1) [3.1]

  15. 10.3.1 POWER5 (3) Figure: Block diagram of the POWER5 (2) [3.12]

  16. 10.3.1 POWER5 (4) Figure: Floorplan of the POWER5 [3.13]

  17. 10.3.1 POWER5 (6) POWER4 POWER5 180 nm, 412 mm2 130 nm, 389 mm2 (~3 % enlarged) Figure: Contrasting the floor plans of the POWER4 and POWER5 dies [3.11], [3.13]

  18. 10.3.1 POWER5 (7) POWER5+ Dual-Core Module Figure: Packaging alternatives of the POWER4/5 processors Source: Partridge R. and Ghatpande S., IBM Introduces POWER5+ and Quad-Core Modules in System p5,” Tech Trends Monthly, Nov./Dec. 2005,

  19. 10.3.1 POWER5 (8) Figure: Quad–Chip POWER4 module (MCM) and a 32-way POWER4 system [3.7]

  20. 10.3.1 POWER5 (9) Figure.: Interpretation of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

  21. 10.3.1 POWER5 (10) Figure: Photos of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

  22. 10.3.1 POWER5 (11) Figure: The Multi-chip module of the POWER5 [3.10]

  23. 10.3.1 POWER5 (12) POWER line POWER4 POWER4+ POWER5 Dual/Quad-Core DC DC DC Introduced 10/2001 11/2002 5/2004 Technology 180 nm 130 nm 130 nm Die size 412 mm2 380 mm2 389 mm2 Nr. of transistors 174 mtrs 184 mtrs 276 mtrs fc [GHz] 1.3 1.7 1.65/1.9 L2 Size/allocation 1.44 MB/shared 1.5 MB/shared 1.9 MB/shared Implementation On-chip On-chip On-chip L3 Size 32 MB 32 MB 36 MB Implementation Tags on-chip, data off-chip Mem. contr. Off-chip On-chip On-chip TDP [W] 115/125 70 80 (est) Packaging SCM1/MCM2 SCM1/MCM2 DCM3/MCM2 Dual threaded Power management DPM6 L3 impl. Tags on-chip Tags on-chip L3 size 32 MB 36 MB 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

  24. 10.3.1 POWER5+ (1) Figure: Block diagram of the POWER5+ Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

  25. 10.3.1 POWER5+ (2) Figure: Dual-Core Modules (DCMs) and Quad-Core Modules (QCM) of the POWER5+ [3.14]

  26. 10.3.1 POWER5+ (3) POWER line POWER4 POWER4+ POWER5 POWER5+ Dual/Quad-Core DC DC DC DC Introduced 10/2001 11/2002 5/2004 10/2005 Technology 180 nm 130 nm 130 nm 90 nm Die size 412 mm2 380 mm2 389 mm2 230 mm2 Nr. of transistors 174 mtrs 184 mtrs 276 mtrs 276 mtrs fc [GHz] 1.3 1.7 1.65/1.9 1.92 L2 Size/allocation 1.44 MB/shared 1.5 MB/shared 1.9 MB/shared 1.9 MB/shared Implementation On-chip On-chip On-chip On-chip L3 Size 32 MB 32 MB 36 MB 36 MB Implementation Tags on-chip, data off-chip Mem. contr. Off-chip On-chip On-chip On-chip TDP [W] 115/125 70 80 (est) 70 Packaging SCM1/MCM2 SCM1/MCM2 DCM3/MCM2 DCM4/QCM5 Dual threaded Power management DPM6 DPM6 L3 impl. Tags on-chip Tags on-chip Tags on-chip L3 size 32 MB 36 MB 36 MB 10.3 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

  27. 10.3.1 POWER6 (1) POWER6 POWER5+ Hardware support of decimal arithmetic Figure: Contrasting the block diagrams of the POWER5 and POWER6 processors [3.15]

  28. 10.3.1 POWER6 (2) POWER line POWER4 POWER4+ POWER5 POWER5+ POWER6 Dual/Quad-Core DC DC DC DC DC Introduced 10/2001 11/2002 5/2004 10/2005 2007 Technology 180 nm 130 nm 130 nm 90 nm 65 nm Die size 412 mm2 380 mm2 389 mm2 230 mm2 341 mm2 Nr. of transistors 174 mtrs 184 mtrs 276 mtrs 276 mtrs 750 mtrs fc [GHz] 1.3 1.7 1.65/1.9 1.92 4-5 L2 Size/allocation 1.44 MB/shared 1.5 MB/shared 1.9 MB/shared 1.9 MB/shared 2*4 MB/private Implementation On-chip On-chip On-chip On-chip On-chip L3 Size 32 MB 32 MB 36 MB 36 MB 64 MB? Implementation Tags on-chip, data off-chip Mem. contr. Off-chip On-chip On-chip On-chip TDP [W] 115/125 70 80 (est) 70 ~100 Packaging SCM1/MCM2 SCM1/MCM2 DCM3/MCM2 DCM4/QCM5 n.a. Dual threaded Power management DPM6 DPM6 n.a. L3 impl. Tags on-chip Tags on-chip Tags on-chip Tags on-chip L3 size 32 MB 36 MB 36 MB 32 MB 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

  29. 10.3 IBM’s MC processors 10.3.2 Cell BE • Cell BE 90 nm 2/2006

  30. 10.3.2 Cell BE (1) Figure: The history and development cost of the Cell BE [3.17], [3.22]

  31. 10.3.2 Cell BE (2) AUC: Atomic Update Cache BIC: Bus Interface Contr. EIB: Element Interface Bus LS: Local Store of 256 KB MFC: Memory Flow Controller MIC: Memory Interface Contr. PPE: Power Processing Element PXU: POWER Execution Unit SMF: Synergistic Memory Flow Unit SPU: Synergistic Processor Unit SXU: Synergistic Execution Unit XDR: Rambus DRAM Figure: Block diagram of the Cell BE [3.19]

  32. 10.3.2 Cell BE (3) Design parameters of the Cell BE: PPE: dual-threaded > 200 GFLOPS (SP) > 20 GFLOPS (DP) > 25 GB/s memory BW > 75 GB/s I/O BW > 300 GB/s EIB BW fc > 4 GHz (lab) Figure: Main design parameters of the Cell BE [3.28]

  33. 10.3.2 Cell BE (4) Figure : Cell SPE architecture [3.16]

  34. 10.3.2 Cell BE (5) Figure: Block diagram of the SPE [3.19]

  35. 10.3.2 Cell BE (6) Figure: Pipeline stages of the Cell BE [3.19]

  36. 10.3.2 Cell BE (7) Figure: Floor plan of a single SPE [3.19]

  37. 10.3.2 Cell BE (8) Principle of operation of the Element Interface Bus (EIB) [3.23]

  38. 10.3.2 Cell BE (9) Figure: The Element Interface Bus EIB) [3.19]

  39. 10.3.2 Cell BE (10) Figure: The Synergistic Memory Flow unit (SMF) [3.19]

  40. Figure: PPE block diagram [3.28]

  41. 10.3.2 Cell BE (11) 235 mm2 241 mtrs Figure: Floor plan of the Cell BE processor [3.19]

  42. 10.3.2 Cell BE (12) Series Cell BE Implementation Heterogeneous1xPPE, 8*SPE Architecture PowerPC 2.02 Cores PPE: 64-bit RISCSPE: Dual-issue 32-bit SIMD with 128 bit capability Introduction 9/2006 (in the QS20 BladeCenter) Technology 90 nm Die size 221 mm2 Nr. of transistors 234 mtrs fc [GHz] 3.0/3.2 L2 PPE: 512 KBSPE: 256 KB Local Store (128*128 bit) L3 Memory controller On-chip Interconnection network Ring based Memory bandwidth 25 GB/s I/O bandwidth Up to 75 MB/s TDP [W] 95 W @ 3GHz Multithreading PPE: 2-waySPE: Table: Main features of the IBM’s Cell BE

  43. 10.3.2 Cell BE (13) Figure: Cell BE Blade Roadmap Source: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

  44. 10.3.2 Cell BE (14) Figure: Roadmap of the Cell BE Source: Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

  45. 10.3 Literature (1) POWER4, POWER4+ [3.1]Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/ [3.2]DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf [3.3]Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf [3.4]Krevell K., „IBM’s POWER4 Unveiling Continuues”, Microprocessor Report, Nov. 20. 2000, pp- 1-4 [3.5]Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture, IBM Server, Technical White Paper, October 2001, http://www-03.ibm.coom/servers/eserver/pseries/hardware/whitepapers/power4.pdf [3.6]Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25, http://www.research.ibm.com/journal/rd/461/tendler.pdf POWER5, POWER5+ [3.7] Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/ [3.8]DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf [3.9]Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf [3.10]Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003, www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

  46. 10.3 Literature (2) POWER5, POWER5+ (cont.) [3.11]Kalla R., Sinharoy B., Tendler J.: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003 http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf [3.12]Krevell K., „POWER5 Tops on Bandwidth”, Microprocessor Report, Dec. 2003http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf [3.13]Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521 [3.14]Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf POWER6 [3.15]Kanter D., „IBM Previews the Power6,” Oct. 2006, dkanter@realwordtech.com Cell BE [3.16]Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html [3.17]Brochard L., A Cell History,” Cell Workshop, April, 2006http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf [3.18]Day M. and Hofstee P., „Hardware and Software Architectures for the Cell Broadband Engine processor, ” CODES, Sept. 2006, http://www.casesconference.org/cases2005/pdf/Cell-tutorial.pdf [3.19]Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

  47. 10.3 Literature (3) Cell BE (cont.) [3.20]Gschwind M., Hofstee H. P., Flachs B. K., Hophkins M., Watanabe Y., Yamazaki T „Synergistic Processing in Cell's Multicore Architecture,”IEEE Micro, Vol. 26, No. 2,2006, pp. 10-24 [3.21]Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf [3.22]Hofstee H. P., „Cell today and tomorrow,” 2005, http://www.stanford.edu/class/ee380/Abstracts/Cell_060222.pdf [3.23]Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf [3.24]Krolak D., „Unleashing the Cell Broadband Engine Processor,” MPR Fall Proc. Forum, Nov. 2005, http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/?ca=dgr-lnxwCellConnects [3.25]Krewell K., „Cell Moves Into The Limelight,” Microprocessor Report, Febr. 14 2005, pp. 1-9 [3.26]Solie, D., „Technology Trends Presentation,” Power Symposium, Aug. 2006, http://www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/ file14+-+darryl+solie+-+ibm+power+symposium+presentation/$file/ 14+-+darryl+solie-ibm-power+symposium+presentation+v2.pdf [3.27]- „Cell Broadband Engine processor – based systems,” White Paper, IBM Corp., 2006 [3.28] - „Cell Architecture”, Course Code L1T1H1-10, 2006, http://www.power.org/resources/devcorner/cellcorner/CellTraining_Track1/CourseCode_L1T1H1-10_ CellArchitecture.pdf

More Related