Who's the Robber?
1 / 15

Analyzing and creating conditional statements - PowerPoint PPT Presentation

  • Uploaded on

Who's the Robber?. Analyzing and creating conditional statements. Who’s the Robber?. We are going to create a courtroom scenario in which the jury is to determine who robbed a bank. We need someone to play the parts of:

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about ' Analyzing and creating conditional statements' - sinjin

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Who's the Robber?

Analyzing and creating conditional statements

Who s the robber
Who’s the Robber?

We are going to create a courtroom scenario in which the jury

is to determine who robbed a bank. We need someone to

play the parts of:

…the remainder of the class is the jury

  • The bailiff

  • The defense attorney

  • The district attorney

  • Courtney Smith

  • Morgan Button

  • Kaitlyn Ford

  • Emma Straight

Who s the robber1
Who’s the Robber?

Members of the jury: You’re job is to determine whether

Courtney Smith robbed the bank. In order to do this, listen to

the testimony. Draw the following chart on your paper to

help you determine if Courtney is the robber.









Who s the robber conclusion
Who’s the Robber? Conclusion

Members of the Jury:

Explain the reasoning used to determine which person drove

each color car.

The statements that you used to draw your conclusions are

called CONDITIONAL STATEMENTS, and this is what we

are talking about today!

Unit 2 section 2 conditional statements

Unit 2 Section 2:Conditional Statements

Conditional Statements


Hypothesis: The part after ______

Conclusion: The part after _______

An IF-THEN statement with two parts, an hypothesis and a conclusion.



Examples of conditional statements
Examples of Conditional Statements

CONDITIONAL: ALL panthers are cats

If-Then Form:

CONDITIONAL: The sum of 2 odd integers is even.

If-then Form:

If an animal is a panther, then it is a cat.

If two integers are odd, then their sum is even.

In class practice
In-Class Practice

Write each statement as an If-Then Statement.

1. Congruent segments are segments that have equal lengths.

2. An equilateral triangle consists of three congruent angles and three equal sides.

If segments are congruent, then the segments have equal lengths.

If a polygon is an equilateral triangle, then it has 3 congruent angles and 3 equal sides.

In class practice1
In-Class Practice

Underline the hypothesis and circle the conclusion of each conditional statement. (Think of how you’d write it in IF-THEN form)

3. VW = XY implies VW  XY

4. K is the midpoint of JL if JK = KL

5. Mr. Scroggins sings when all his students get an A on the test.

6. People who live in Texas, live in the US..



A specific case for which the conjecture is false.

In class practice2
In-Class Practice

Provide a counterexample to disprove the statement.

7. If Rachel is 16 years old, then she has obtained her driver’s license.

8. If a number is divisible by 4 then it is divisible by 6.

Maybe she didn’t pass the test

16 is divisible by 4 but not 6

Other conditionals

Switch the hypothesis and conclusion.




Negate the hypothesis and conclusion.

Write the converse and then negate the hypothesis and conclusion.

Types of statements
Types of Statements

If p, then q

p  q

If it is a rose, then it is a flower.

If NOT p, then NOT q

~ p  ~q

If it is NOT a rose, then it is NOT a flower.

“the nots”

If q, then p

q  p

“the flips”

If it is a flower, then it is a rose.

If NOT q, then NOT p

~q  ~p

“the flip nots”

If it is NOT a flower, then it is NOT a rose.

The Conditional and Contrapositive are related – if one is true, they are both true. The Inverse and Converse are related – if one is true, they are both true or if one is false, they are both false!!










  • Get in groups of 2 – 4 to complete the 2.2 Logical Reasoning (“if-then” statements) Worksheet