1 / 37

La géométrie tropicale présentée par

La géométrie tropicale présentée par. Le lycée Saint-Louis de Stockholm. Le lycée d'Altitude de Briançon. Le collège Fontreyne de Gap. On définit deux nouvelles opérations : a Å b = min{a;b} a Ä b = a+b. Par exemple :. Les propriétés des opérations tropicales.

Download Presentation

La géométrie tropicale présentée par

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. La géométrie tropicale présentée par

  2. Le lycée Saint-Louis de Stockholm Le lycée d'Altitude de Briançon Le collège Fontreyne de Gap

  3. On définit deux nouvelles opérations : a Å b = min{a;b} a Ä b = a+b Par exemple :

  4. Les propriétés des opérations tropicales

  5. I/ Les éléments neutres Exemple : a×1=a Pour la multiplication tropicale, a Ä b = a+b

  6. I/ Les éléments neutres Pour l'addition tropicale, a Å b = min{a;b}

  7. II/ La multiplication tropicale On peut changer l'ordre des facteurs d'un produit. Pour calculer un produit de plusieurs facteurs, on peut placer des parenthèses où on veut. a Ä b = a+b

  8. III/ L'addition tropicale On peut changer l'ordre des termes d'une somme. a Å b =b Å a Pour calculer une somme de plusieurs termes, on peut placer des parenthèses où l'on veut. (a Å b) Å c = a Å (b Å c) a Å b = min{a;b}

  9. IV/ La division tropicale La division tropicale correspond à la soustraction que l'on connaît. On ne peut pas changer l'ordre des nombres dans une division. S'il y a plusieurs divisions successives, on ne peut pas mettre des parenthèses où l'on veut.

  10. V/ La soustractiontropicale La soustraction tropicale n'existe pas.

  11. VII/ Les fractions tropicales aÄb = a+b

  12. VIII ) Les carrés et les identités remarquables de la géométrie tropicale • Nous prendrons d’abord le carré tropical : x ’²’ x’²’ = x ⊗ x  x’²’ = x + x = 2x Exemple : 4’²’ = 4 ⊗ 4  4’²’ = 4 + 4 = 8 A partir de ces résultats, on peut établir une règle générale: PROPRIETE : soit n un entier naturel x ’n’ = x ⊗ x … = x + x … = nx n fois n fois

  13. VIII ) Les identités remarquables de la géométrie tropicale • Voyons l’identité remarquable (a+b)² (a  b)’²’ = min {a ; b} ⊗ min {a ; b} = min {a ; b} + min {a ; b} = 2 x min {a ; b} A partir de ces résultats, on peut établir une règle générale: PROPRIETE : soit n un entier naturel (a  b)’n’ = an  bn

  14. VIII ) Les racines n- ièmes • On sait que : x '^' 2 = 2 × x

  15. VIII ) Les racines n- ièmes • Si on prend un entier naturel n : on a 'RACINEn'( x '^' n ) = x. Donc 'RACINEn'(x) = x / n.

  16. Représentations graphiques : 1er et 2nd degré

  17. 1er degré – Représentation graphique • Cas général : y = (ax)  b Équivalent à y = min { a + x ; b } Droite en deux morceaux Morceau croissant Morceau constant Point De Cassage

  18. 1er degré - Partie Croissante  Le morceau croissant correspond à la partie de l’équation y = a + x tant que x ≤ b-a  La droite a un coefficient directeur de 1

  19. 1er degré - Point de Cassage  Le point de cassage est le point où la fonction devient constante  On peut déterminer les coordonnées de ce point. En effet, son abscisse est solution de l’équation a+x=b. Or a+x=b  x = b-a. On en déduit donc les coordonnées de ce point : (b – a ; b).

  20. 1er degré - Partie Constante  La fonction est constante

  21. 1er degré – Aspect algébrique • On peut déterminer les solutions de l’équation : y = axb qui équivaut à y = min{a+x ; b} Le résultat sera a+x si a+x < b pour x Є ] -∞ ; b-a[ Le résultat sera b si a+x > b pour x Є [ b-a ; +∞[

  22. Exemple : (2  x)  3 (b - a ; b) = (3 – 2 ; 3) = (1 ; 3)

  23. 2nd degré - Les 2 sortes de droites • Pour le 2nd degré, il existe deux sortes de courbes : une en deux morceaux et une en trois morceaux. • Nous avons cherché à savoir quand nous avions deux morceaux et quand nous en avions trois. • Nous avons donc décomposé une équation du type y = (ax²)(bx)  c en trois parties : ax² ; bx et c.

  24. 2nd degré – Exemple 1 :y = (3x²)(5x)  10 2 Points de Cassage, Il y a trois morceaux

  25. 2nd degré – Exemple 2 :y = (3x²)(5x)  7 1 Point de Cassage, Il y a un deux morceaux

  26. 2nd degré – Nombres de morceaux • Nous avons trouvé que lorsque les deux premières droites se coupent en un point dont l’ordonnée est supérieure ou égale à b il y aura 2 morceaux , sinon il y aura trois morceaux. 2 morceaux 3 morceaux L’ordonnée est supérieure ou égale à b L’ordonnée est inférieure à b

  27. 2nd degré – Représentation graphique Cas général : y = (ax2)(bx) c Équivalent à y = min ( a+2x ; b+x ; c ) Droite en 3 parties Point de Cassage 2 Point de Cassage 1 Partie Constante Partie croissante 1 Partie croissante 2

  28. 2nd degré –Partie croissante 1  Correspond à la partie de l’équation y = a+2x tant que x>b-a  Son coefficient directeur est 2

  29. 2nd degré – Point de Cassage 1  Ses coordonnées sont ( c-a ; b-a)

  30. 2nd degré – Partie croissante 2  Correspond à la partie de l’équation b+x tant que b-a<x<c-b  Son coefficient directeur est 1

  31. 2nd degré – Point de Cassage 2  Ses coordonnées sont (c - b; b)

  32. 2nd degré – Droite constante  La fonction est constante

  33. Loi générale sur les polynômes • Si on a le polynôme tropical : P(x)= (an xn)  (an-1  xn-1)  …  (a1 x)  a0 Il équivaut à : P(x) = min {an + nx ; an-1 + (n-1)x ; … ; a1 + x; a0} Graphiquement, on obtient une succession de droites avec des pentes décroissantes de n à 0.

  34. Premier problème de géométrie Soit une droite d et un point A extérieur à la droite d. Peut-on tracer une droite parallèle à d passant par A ?

  35. Deuxième problème • Si on prend deux points du plan. Peut-on tracer une droite passant par ces deux points ?

  36. Si le point B est dans une zone verte, il n'existe pas de droite (tropicale) passant par A et B Si le point B est dans une zone jaune, il existe une droite (tropicale) passant par A et B Si le point B est sur une des droites bleues, il existe une infinité de droites (tropicales) passant par A et B

More Related