3 d migration deconvolution
This presentation is the property of its rightful owner.
Sponsored Links
1 / 42

3-D Migration Deconvolution PowerPoint PPT Presentation


  • 90 Views
  • Uploaded on
  • Presentation posted in: General

3-D Migration Deconvolution. Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah. Jianxing Hu, GXT. Bob Estill, Unocal. Outline. Why Do Migration Deconvolution (MD) ?. Migration Deconvolution. Implementation of MD. Examples.

Download Presentation

3-D Migration Deconvolution

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


3 d migration deconvolution

3-D Migration Deconvolution

Jianhua Yu, University of UtahGerard T. Schuster, University of Utah

Jianxing Hu, GXT

Bob Estill, Unocal


Outline

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples

Conclusions


Outline1

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples

Conclusions


Migration noise problems

Footprint

Weak illumination

Migration noise and artifacts

Migration Noise Problems

0

Depth (km)

3.5


3 d migration deconvolution

Improving spatial resolution

Enhancing illumination

Purpose of MD Processing:

Suppressing migration noise and artifacts


Outline2

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples

Conclusions


3 d migration deconvolution

L is modeling operator

Reflectivity

Migrated image

Migration:

T

M = L

L R


3 d migration deconvolution

T

-1

R = (L L ) M

Goal:

Reflectivity

Migrated Section

Design an improved MD filter

MD is to eliminate the blurring influence in migration image by designing MD operator

3-D PRESTACK MD


Outline3

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples

Conclusions


3 d migration deconvolution

Acquisition geometry information

Velocity cube

MD Implementation Steps:

Step 1:

Prepare traveltime table

or

Use migration timetable


3 d migration deconvolution

Y (km)

N

Depth Leveli

L

Depth (km)

MD Implementation Steps:

Step 2:

Calculate the migration Green’s function


3 d migration deconvolution

Step 5:

Repeat Steps 2-4 until the maximum depth is finished

Step 4:

Invert MD image at the depth Zi by solving linear equations

MD Implementation Steps:


Outline4

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples : Synthetic data

Conclusions


3 d migration deconvolution

10 km

3X3 Sources;

11 X 11 Receivers

dxshot=dyshot=1.5 km

dxg=dyg=0.3 km

3-D Point Scatterer Model

3 km

3 km

0

0

Imaging: dx=dy=50 m

dz=100 m


3 d migration deconvolution

0

0

0

0

0

0

0

0

0

0

0

0

X (km)

X (km)

X (km)

X (km)

X (km)

X (km)

Y (km)

Y (km)

Y (km)

Y (km)

Y (km)

Y (km)

3

3

3

3

3

3

3

3

3

3

3

3

MIG MD

Depth Slices

Z=1 km

Z=3 km

Z=5 km


3 d migration deconvolution

0

0

0

0

0

0

0

0

0

0

0

0

X (km)

X (km)

X (km)

X (km)

X (km)

X (km)

Y (km)

Y (km)

Y (km)

Y (km)

Y (km)

Y (km)

3

3

3

3

3

3

3

3

3

3

3

3

MIG MD

Depth Slices

Z=7 km

Z=9 km

Z=10 km


3 d migration deconvolution

3.5 km

5 X 1 Sources; 11 X 7 Receivers

Meandering Stream Model

2.5 km

2.5 km

0

0


3 d migration deconvolution

0

X (km)

2.5

2.5

0

Y (km)

Z=3.5 KM

Mig

Model

MD


3 d migration deconvolution

9 X5 Sources;

201 X 201 Receivers

dxshot=dyshot=1 km

3-D SEG/EAGE Salt Model

12.2 km

12.2 km

0

0

Imaging: dx=dy=20 m


3 d migration deconvolution

3-D SEG/EAGE Salt Model

Y=7.12 km

Y (km)

X (km)


3 d migration deconvolution

Mig and MD ( z=1.4 km, negative polarity)

X (km)

X (km)

5

9.8

5

9.8

3

Y (km)

10

Mig

MD


3 d migration deconvolution

Mig (z=1.2 km)

MD (z=1.2 km)

X (km)

X (km)

5

9.8

5

9.8

3

Y (km)

10


3 d migration deconvolution

Mig (z=1.2 km)

MD (z=1.2 km)


Outline5

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples: 2-D field data

Conclusions


Ps pstm image by unocal

X (km)

0

6

0

PS PSTM Image ( by Unocal)

Time (s)

8


3 d migration deconvolution

X (km)

0

6

0

PSTMD

PSTM(courtesy of Unocal)

MD

Time (s)

8


3 d migration deconvolution

X (km)

0

6

3

PSTM(courtesy of Unocal)

PSTMD

MD

Time (s)

8


Outline6

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples: 3-D field data

Conclusions


3 d migration deconvolution

: Sources

: Receivers

3-D Land Field Data


3 d migration deconvolution

3D PSTM (courtesy of Unocal)

MD

Inline

Crossline

1.6 s


3 d migration deconvolution

MD

3D PSTM (courtesy of Unocal)

Crossline

2.0 s


3 d migration deconvolution

Mig in Inline (Courtesy of Unocal) MD

3


3 d migration deconvolution

Mig

MD

Mig

MD


3 d migration deconvolution

MD

Mig (Courtesy of Unocal)

Inline Number

Inline Number

1

90

1

90

1

Crossline Number

300

(2 kft)


3 d migration deconvolution

Fault

Fault


3 d migration deconvolution

MD

Inline Number

Inline Number

1

90

1

90

1

Crossline Number

265

Mig (Courtesy of Unocal)

(3.6 kft)


3 d migration deconvolution

Mig (courtesy of Unocal)

MD

Inline Number

1

90

1

Inline Number

90

1.1

Depth (kft)

7.0

(Crossline=50)


3 d migration deconvolution

Mig (courtesy of Unocal)

MD

1

90

1

90

1.1

Depth (kft)

8.0

(crossline 200)


3 d migration deconvolution

Crossline Number

(Inline =50)

1

250

1.1

Depth (kft)

Mig (Unocal)

7.0

1.1

MD

7.0


Outline7

Outline

Why Do Migration Deconvolution (MD) ?

Migration Deconvolution

Implementation of MD

Examples

Conclusions


Conclusions

Aperture width and filter length in designing MD filter are two key parameters

Improve resolution and suppress migration artifacts

MD cost is related with acquisition

geometry

Conclusions


Acknowledgments

Acknowledgments

  • Thank Amramco, Unocal, and Chevron-Texaco for providing the data sets

  • The help and comments from Alan Leeds and George Yao are very appreciated

  • Thank 2002 UTAM sponsors for their financial support

  • http://utam.gg.utah.edu


  • Login