«Некоторые вопросы моделирования морских экосистем»
Download
1 / 32

«Некоторые вопросы моделирования морских экосистем» - PowerPoint PPT Presentation


  • 117 Views
  • Uploaded on

«Некоторые вопросы моделирования морских экосистем». Мазлумян С.А.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' «Некоторые вопросы моделирования морских экосистем»' - shea-leon


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

«Некоторые вопросы моделирования морских экосистем»

Мазлумян С.А.


  • Определение модели по моделирования морских экосистем»А. А. Ляпунову: Моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель)



Задача: изучить структуру сообществ макробентосаКаркинитского залива в XX веке

  • находящаяся в некотором объективном соответствии с познаваемым объектом;

  • способная замещать его в определенных отношениях;

  • дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте.


Сравнение кривых ранг/обилие (кривые Уиттекера) макробентосаКаринитскогозалива (исходные данные обилие видов бентоса – Повчун А.С.)


  • Глубоководный бентос, (кривые представленный в 30-е годы сообществом двустворчатого моллюскаAbranitidaотличала устойчивая структура.

  • В 90-х годах сообщество Abranitida смещается на северо-запад залива, а его место занимает сообщество полихеты Nephtyshombergii. Структура сообщества Abranitidaтрансформируется.

  • В конце столетия структура глубоководного бентоса упрощена, что характерно для биотопов со средним уровня загрязнения.


X (кривые

S

Y

  • Для данной системы Sгиперсолёного озера: пусть К - произвольное множествовоздействий извне. Функция R: (К × X) Y такова, что (x,y)  S kR(k, x=y. (4)Тогда К - называется множеством объектов глобальных состояний экосистемы гиперсолёного озера, а его элементы просто глобальные состояния системы гиперсолёного озера. Функция R - определена нами как глобальная реакция системы озера


Исходные данные (кривые

  • Макрофиты озера морского происхождения, расположенного вблизи черноморского мыса Херсонесский (г. Севастополь). Исследование донной растительности озера показало, что в ее состав входят 4 вида, три из которых относятся к водорослям отдела Chlorophyta и один – к морским травам отдела Angiospermae. Зеленые водоросли представлены двумя родами (CladophoraKütz. и UlothrixKütz.), двумя семействами (UlothrichaceaKütz. и CladophoraceaWille) двух порядков (ChlorococcalesMarchand иCladophoralesHaeckel). К зеленым водорослям озера относятся виды Cladophoravadorum(Aresch.) Kütz., C. siwachensis C. Meyer, Ulothriximplexa(Kütz.) Kütz. Из морских трав в озере встречен один вид - Ruppiacirrhosa(Petagna) Grande. Поддерживающая ёмкость расчитана в величинах средней фитомассы (г*м-2 ). На тренде, изменения поддерживающей ёмкости Херсонесского озера за исследуемый период отмечено два экстремума: максимум 3097,27 г*м-2 и минимум 137,39 г*м-2


Prazu k in et al 2008
Модель поддерживающей ёмкости экосистемы гиперсолёного озера (данные-Prazukin, et al. 2008).


Модель = экосистемы гиперсолёного озера (данные-Prazu

=Уравнение, выражающее идею.


ЛИНЕЙНЫЙ РОСТ И ПРОДОЛЖИТЕЛЬНОСТЬ ЖИЗНИ МОЛЛЮСКА CHAMELEA GALLINA (BIVALVIA: VENERIDAE) ИЗ ЧЕРНОГО МОРЯ (144 экз)

данные - Н.А. Болтачёва

Lt =27,25 (1-e- 0.609 ( t+0,143))Функция содержит в качестве независимой переменной возраст (годы), а в качестве зависимой переменной длину раковины – Lt (мм) итри параметра: L∞; K; t0 .


Оценить продолжительность жизни по расчетным показателям, вычисленным на основании уравнения Берталанфи

  • T= -[ln(1-Lm/L∞)]/К,

  • где Т – возраст наиболее крупной особи, Lm - ее длина, К, L∞ - параметры уравнения Берталанфи, в качестве Lm - средний из максимальных размеров (например, из 7 измерений) равный 27,10 мм.

  • Полученный расчетный максимальный возраст равен максимальному возрасту моллюсков в исследованной выборке: 9 годам. Этот факт можно объяснить достаточно близким соответствием эмпирической и расчетной кривой

  • Интересен тот факт, что максимальный возраст, отмеченный для хамелеи из Средиземного моря – 4 года. Средний размер раковины для этой возрастной группы около 27 мм. Такого размера моллюски из Черного моря достигают в возрасте 8 лет

  • Разница в скорости роста одного и того же вида в разных частях ареала может быть вызвана разными температурными условиями обитания: 7 – 28 оС (Средиземное море, побережье Испании) и 4 - 21 оС (Черное море, бухта Омега)


L по расчетным показателям, вычисленным на основании уравнения Берталанфи t =27.25(1-e- 0.609 (t+0.143))

T = - [ln (1-Lm/L∞)] / К


Сетевая модель фитоценоза (исходные данные - А.А. Калугина-Гутник - Н.А. Мильчакова)

  • Была создана база данных на основе имеющихся материалов 1967,1977,1997гг. В базу вошли фитоценозы Севастопольских бухт и западного побережья Крыма. Построены сетевые модели цистозировых фитоценозов открытого берега. Херсонесский маяк, Древняя стена, м. Омега.


Сетевая модель фитоценоза (исходные данные


Изменение состояния фитоценозов в 1977 г.


  • Результатом оказалось то, что фитоценозов в 1977 г. величины оценочных характеристик моделей разбивают Севастопольские бухты на ранжированный ряд, в котором меньшим величинам соответствуют бухты с наибольшей степенью загрязнения, а большим фитоценозы открытого берега. Согласно оценочным параметрам, сетевых моделей за 20 лет в фитоценозах Херсонессого маяка, м. Омега, в районе Херсонесского заповедника произошли структурные изменения свидетельствуют о перестройке структуры сообществ и уменьшении составляющей доминирующего видов C.crinita и C.barbata. Все отмеченные нами изменения в фитоценозах свидетельствуют об ухудшении состояния рассмотренных фитосообществ.


Задачи математического моделирования

  • Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать её поведение (сетевая модель, стохастическая модель структуры сообщества)

  • Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с её моделью (гиперсолёное озеро, модель роста)


Основные этапы математического моделирования

  • Построение модели. 

  • Решение математической задачи, к которой приводит модель.

  • Интерпретация полученных следствий из математической модели.

  • Проверка адекватности модели.

  • Модификация модели


Построение модели моделирования.

  •  На этом этапе задается некоторый объект  — e.g.- сообщество. При этом, как правило, четкое описание ситуации затруднено.

  • Сначала выявляются основные особенности биотопа и связи между биотическими и абиотическими составляющими на качественном уровне.

  • Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.


Решение математической задачи, к которой приводит модель

  • На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи, при помощи которых результат может быть найден с необходимой точностью.


Интерпретация полученных следствий из математической модели

  • Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в гидробиологии.


Проверка адекватности модели. следствий из математической модели

  • На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности e.g.- в качестве примера может послужить сравнение в разнице в скорости роста одного и того же вида в разных частях ареала и обитания максимальный возраста, отмеченного для хамелеи из Чёрного и Средиземного морей


Модификация модели. следствий из математической модели

  • На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.


Классификация моделей следствий из математической модели (по характеру решаемых проблем)

Модели могут быть разделены на функциональные и структурные.

  • Функциональные модели:

    все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа.


Структурные модели следствий из математической модели

  • Модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов (сетевая модель фитоценоза).


Классификация моделей следствий из математической модели(по характеру исходных данных и результатов предсказания )

Модели могут быть разделены на детерминистические и вероятностно-статистические.

  • Модели детерминистические дают определенные, однозначные предсказания(уравнение роста).

  • Модели вероятностно-статистические основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер (структура глубоководного бентоса).


Гипотетические модели следствий из математической модели

  • Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

  • Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической.

  • Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер


Заключение следствий из математической модели

  • Построение математической модели в прикладных задачах гидробиологии – один из наиболее сложных и ответственных этапов работы.

  • Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину.

  • Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области.


ad