1 / 47

Solar System Working Group 2nd Meeting ----- F. Mignard

Solar System Working Group 2nd Meeting ----- F. Mignard. AGENDA 17/10. 09h00 Welcome and administrative matters of the WG, membership F. Mignard 09h30 Status of the GAIA programme M. Perryman 10h00 Impacts of the new design : geometry, detection F. Mignard 10h30 Coffee

shayla
Download Presentation

Solar System Working Group 2nd Meeting ----- F. Mignard

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solar System Working Group 2nd Meeting ----- F. Mignard

  2. AGENDA 17/10 09h00 Welcome and administrative matters of the WG, membership F. Mignard 09h30 Status of the GAIA programme M. Perryman 10h00 Impacts of the new design : geometry, detection F. Mignard 10h30 Coffee 10h45 Orbit prediction and determination K. Muinonen, J. Virtanen 11h30 Orbit improvements M. Carpino 12h15 lunch break 14h00 The NEO population model- Observations from space A. Morbidelli 14h30 Simulations of the MPs and NEOs passages with the new design F. Mignard 15h00 Update on a possible ground based network W. Thuillot 15h30 Design of an automatic instrument: the ARAGO project M. Boer 16h00 The asteroid data base by 2010 E. Zappala 16h30 coffee 17h00 Simulation of images of asteroids by GAIA A. Dell'Oro 18h00 Signal produced by gaia from asteroids D. Hestroffer (scattering, shape, photocenter shift) 18h30 Interactions with the simulation group all

  3. AGENDA 18/10 9h00 Taxonomy with the photometric data : status E. Dotto 9h30 Asteroids radial velocity E. Dotto 10h15 The data base for GAIA E. Zappala 10h45 Coffee 11h00 Masses of asteroides from ground based observations. M. Rapaport The present situation. Perspectives. 11h45 Statistics of close approaches in 2011-2016. F. Mignard 12h15 lunch break 14h00 Conclusions and actions, next meeting 16h00 End of the Meeting

  4. The Solar System Science with GAIA The Solar System Working Group

  5. Systematic survey down to 20 mag ~ 5x105 objects • Main belt • NEOs • Orbits : virtually all object observed - x30 better than now • Masses from close encounters ~ 100 masses expected • Diameter for over 1000 asteroids : shape, density • Photometric data in several bands : albedo, taxonomic classification • Space distribution vs. physical properties • Perihelion precession for 300 planets Science Goals

  6. Objectives of the task • Assess observability of : • minor planets, NEOs, satellite, comets, KBO • Set the constraints on the CCDs for the best detection of moving sources • Determine the algorithms for the orbit reconstruction (known or new objects) • Assess the requirements on photometry for the best science return • Assess the needs of and provide solar system ephemeris • Provide recommendations for the quick alert mode • Investigate the organisation of follow-up observations

  7. Membership Core members Associates • M. Carpino • A. Cellino • A. del'Oro • E. Dotto • D. Hestroffer • E. Hoeg • S. Klioner • F. Mignard • K. Muinonen • M. Rapaport • P. Tanga • W. Thuillot • E. Zappala • C. Bailer-Jones • P. Bendjoya • J. Berthier • F. Colas • A. Doressoundiram • W. Evans • C. Fabricius • P. Hjorth • J. Kovalevsky • P. Kroll • C.I. Lagerkvist • R. Michelsen • A. Morbidelli • V. Vansevivius • J. Virtanen • S. Wolff

  8. Activities Tasks identified Leader - Asteroid size and shape A. Cellino - Simulation and detection F. Mignard - Orbit determination K. Muinonen - Surface properties P. Tanga - Photometry & Taxonomy E. Dotto - Data base E. Zappala - Mass determination D. Hestroffer - Ground based follow-up W. Thuillot

  9. Review of Actions (Feb 02) • Provide a reference orbit for GAIA about L2 (FM) • Investigate the possibility to obtain radial velocities (ED) • Short note on the Monte Carlo method for orbits(KM) • Algorithms for the orbit determination with GAIA data (KM, MC,DH) • Investigate the propagation of orbit uncertainty to positions (MC) • Outline of a global solution for mass determination(FM, DH) • Investigate the photocenter offset vs. scattering model (AC) • State of the art in the knowledge of asteroid masses (MR) • How many objects and orbits by 2010 ? (EZ) • Web pages on-line(FM) • Discussion area and common storage zone (PT)

  10. Relevance of the new design for Solar System

  11. GAIA : Optical system Astro-2 Primary mirror Astro-1 Primary mirror ASTRO-1 secondary mirror reflectors ) ASTRO focal plane Basic angle monitoring

  12. Parameters of the main optics • Aperture 1.4 x 0.5 m2 • Focal length 47 m • Scale 1 mas = 0.2 µm • Basic angle 106° • Spin period 6 h • Astro Fi eld of view 0.66 x 0.66 deg 2 • Extended 0.92 x 0.66 deg2

  13. ~ 750 mm, 0.92 deg 600 mm 0.74 deg ASM1 AF1-11 BBP ASM2 Astro Focal plane Astro Field • Cell size : 49 x 60 mm2 • CCD size : 45 x 59 mm2 • 4.5 k x 2 k • Pixel size 10 x 30 µm2 • = 44 x 133 mas2 • TDI : 0.735 ms • Airy (along) 103 mas • Integration time : 3.3 s • For ASM : 1.9 s FOV 1 FOV 2

  14. Photo and spectro telescope Focal length 2.1 m Aperture 0.5 x 0.5 m2 Airy spot ~ 300 mas Field of view 2° x 4.8 ° Unvignetted 2° x 3.2 ° Scale 10 µm = 1"

  15. 2° = 120s = 74 mm MBP1 1.6° 60 mm MBPSM RVS 1.6° 60 mm RVSM 1.6° 60 mm MBP2 MBP and Spectro Fields CCDs MBP : 336 x 3932 pxs RVS : 1100 x 3932 pxs Pixel size 10 x 15 µm2 1 x 1.5 arcsec2 Integration time RVSM ~ 3 x 5.5s MBPSM : 5.5 s Resolution R ~ 10000 = 0.4 Å/pixel V =19%

  16. Detection of moving objects

  17. Detection and recognition • Solar system objects are moving relative to the stars • Internal detection from motion: field crossing ~ 30 s, • Observations in the 2 astro FOVs and in the spectro FOV • NEO ~ 50-100 mas/s • Main belt ~ 10 mas/s • Trojan ~ 5 mas/s   • Kuiper belt ~ 1 mas/s

  18. 2° = 120s = 74 mm ~ 750 mm, 0.92 deg MBP1 1.6° 60 mm MBPSM 600 mm 0.74 deg RVS 1.6° 60 mm RVSM 1.6° 60 mm MBP2 ASM1 AF1-11 BBP ASM2 FOV 1 FOV 2 V =19% Astro and Spectro Focal planes

  19. Detection-I Airy Pixel Integration mas mas s ASM 100 40 1.9 AF1 100 40 3.3 RVSM 300 1000 5.5*3 MBPSM 300 1000 5.5

  20. s mas pixels MB NEO MB NEO ASM1  AF1 4.5 45 135 1.1 3.3 ASM2  AF1 2.6 26 78 0.7 2.1 AF1  AF11 33 330 1000 8 24 RVSM1  RVSM3 12 120 360 0.12 0.4 A S M 2 A S M 1 A F 1 Detection II • Signature : relative motion of the image wrt TDI'ed image • Measure : comparison of abscissa in different CCDs • Average alon-scan speed : • 10 mas/s main-belt • 30 mas/s neo

  21. Detection III • Motion between Prec and Foll FOV • No direct comparison of position • But shift wrt to the stars  shift in crossing time • 106° ~ 6000 s MB NEO Da ~ 60 180" Dt ~ 1s 3s

  22. 0.7° ~ 3s = 180 " 0.25° max Detection IV t t+ 6000 s

  23. Simulations and tools available

  24. Simulation for the Solar System • Goal : to provide realistic sequences of observations of moving sources • Method : Computing the crossing time in the 3 FOVs of minor planets • Crossing over 5 years of the scanning law and several 104 asteroids (main belt, neos) • Output : for each object • t1, t2, … tn : crossing times • v1, v2, … vn : crossing speed ( along scan and transverse) • Apparent magnitude

  25. Structure of the output file 1 Ceres 310 2 2 0 1 -1 0 2 2 15.5200 15.7708 16.0217 16.0731 16.1475 16.2725 16.5234 36.5252 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.6 21.45 21.43 21.40 21.40 21.37 21.37 21.34 17.87 2.30 2.20 2.11 2.11 2.01 2.01 1.91 -3.05 6.05 6.03 6.01 6.01 5.99 5.99 5.97 -1.52 Planete ID, N_obs Fields (0 : spectro, 1: astro leading, -1 : astro trailing , 2 : MBP) Crossing time (days) Apparent magnitude Phase angle in deg. Inertial speed along scan in mas/s Inertial speed cross scan in mas/s

  26. Other tools • Scanning law of GAIA as a callable subroutine • call scanning(XMJD, XSI,XKK,ETAZ, XLSUN, PSI, TETA,PSIP,TETAP, SUN, EPS) ! input ! ! xmjd : date in modified julian days ! xsi : sun aspect angle (50 deg) ! xkk : precession frequency (5.25 rd/yr) ! etaz : initial phase ! ! output ! ! xlsun : longitude of the sun in degrees ! psi : ascending node/sun of the scanning circle in deg ! teta : inclination of the scanning circle in deg ! psip : dpsi/dt in "/s ! tetap : dteta/dt in "/s ! sun : heliotropic abscissa of the node ! eps : latitude of the sun /scanning circle (pi/2-xi)

  27. Other tools • A realistic orbit of Gaia about the L2 point (file or subroutine) • Lissajous orbit with 6 - 7 years quasi-period • Motion of the barycenter wrt the Sun • Surbroutine with an accuracy of 1000 km

  28. Overall Statistics

  29. Number of observations

  30. Number of Epochs

  31. Phases of minor planets with GAIA Statistics on the first 20 000 planets

  32. Solar elongation of minor planets Statistics on the first 20 000 planets

  33. Apparent magnitude Statistics on the first 20 000 planets

  34. Apparent Magnitudes V = H + Dm

  35. Along and across-scan proper speed MB NEOs NEOs MB

  36. Distance to Sun and Earth MB MB

  37. How many Close Approaches ?

  38. V Dq D m m D D V Dq Msol kmuakm/smas 10-10 ~500 0.1 3 40 0.05 3 80 10-11 ~200 0.1 3 4 0.05 3 8 Close approach : impulse approximation Perturbed motion of a minor planet

  39. Close approaches 2010.5 - 2016 • List of close approaches between • the first 500 minors planets and 20 000 targets • Criteria used for an effective close approach • distance • relative speed • angular deflection • impulse change of orbital elements • Ouptut : • each close approach (date, geometry, efficiency) • global statistics per deflector

  40. Number of closest approaches < dmin dmin < 0.2 0.1 0.05 0.02 0.01 au 1 Ceres 356 82 14 3 0 2 Pallas 181 46 9 1 1 3 Juno 531 125 23 3 0 4 Vesta 597 159 37 5 2 5 Astraea 577 141 41 5 1 6 Hebe 512 134 34 4 2 7 Iris 556 136 34 1 0 8 Flora 626 155 35 6 1 9 Metis 597 141 38 8 2 10 Hygiea 238 56 14 3 2 11 Parthenope 603 153 43 6 2 12 Victoria 532 129 36 4 2 13 Egeria 287 86 12 1 0 14 Irene 408 108 22 5 2 15 Eunomia 473 115 25 1 0

  41. Statistics

  42. Number of deflections > qlim q > 1 5 20 100 mas 1 Ceres 8738 4828 1518 163 2 Pallas 275 18 1 0 3 Juno 162 6 0 0 4 Vesta 5772 1575 314 30 5 Astraea 41 6 0 0 6 Hebe 66 9 0 0 7 Iris 382 51 7 1 8 Flora 188 22 2 2 9 Metis 3369 773 144 16 10 Hygiea 3675 901 193 26 11 Parthenope 377 48 8 0 12 Victoria 34 8 2 0 13 Egeria 93 5 2 0 14 Irene 1874 195 24 3 15 Eunomia 377 27 6 0 N > 5305 120 40 11

  43. Actions for the next six months

  44. Next meeting ...

  45. Actions (Oct 02) Pending from the last meeting • Outline of a global solution for mass determination(MR, FM, DH) • Web pages on-line(FM, PT) • available documents, presentations ... New actions • Initial error model for the astro observations of moving objects (FM) • Simulated observations in the astro fields over short timespan (FM) • Contact with C. Jordi for the photometric band (ED) • Algorithms for detection for moving objects (SW, FM, PH, EH) • Contact with IAU WG on GB astrometry (WT) • Determination of physical parameters from photometry (EZ) • Observability of planets and satellites (PT) • Add planets in the simulation file (FM)

  46. Actions (Oct 02) New actions (ctd) • Radial velocities in the simulation file (FM) • List of minor planets and pieces of software for Sim WG (AM) • Observations of very faint objects with input catalogue () • GB observations vs. GAIA for orbit improvement (MC) • Non gravitational forces (AM, ....)

  47. Some useful numbers D : diameter - H : abs. mag. - q : angular diameter - V : apparent mag. Albedo = 0.05

More Related