1 / 49

Descrioción anatómica del caracol Purpura panza ,empleado Por los tejedores mixtecos

Descrioción anatómica del caracol Purpura panza ,empleado Por los tejedores mixtecos . Source: Natural & Synthetic Organic & Inorganic Vegetal, Animal, Microbial 1856. Discovery of mauve by Perkin (purpure of Tyre)

shawn
Download Presentation

Descrioción anatómica del caracol Purpura panza ,empleado Por los tejedores mixtecos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Descrioción anatómica del caracol Purpura panza,empleado Por los tejedores mixtecos

  2. Source: Natural & Synthetic Organic & Inorganic Vegetal, Animal, Microbial 1856. Discovery of mauve by Perkin (purpure of Tyre) 1906. review of 80 commercial products (30 never tested before, 26 with mixed results. Only 7 were approved.

  3. Impact of Biotechnology on the current colorant Industry Microbial processes Monascus purpureus (polyketide pigments) Phaffia rhodozyma (Astaxanthin) Spirulina maxima (Phycyanin) Dunallella salina (b-carotene) Extraction from seeds and flowers Marigold flowers (lutein) Crocus sativus (saffron; a crocin) Bixa orellana (achiote) Extraction from waste products crawfish, red crab, shrimp (Astaxanthin) Enzymatic process resolution of zeaxanthin Tissue culture Lithospermum eryhrorhizon (shikonin) Genetic Engineering Escherichia coli (indigo)

  4. CAROTENOIDES Uno de los grupos de pigmentos naturales mas distribuidos y diversos en la naturaleza. >600 estructuras conocidas. Algunas especies los sintetizan de novo mientras que otras, particularmente animales, solo capaces de absorberlos y metabolizarlos. Síntesis en la naturaleza de unos 100 millones de toneladas anuales Carotenos: C40 cadenas hidrocarbonadas (generalmente anaranjados a rojizos) Xantophylls: Sus derivados oxigenados (generalmente amarillos) De los conocidos, un 10% tiene valor como vitamina A . Además del beta-caroteno, los más importantes entre ellos son el alfa-caroteno y la b eta-criptoxantina. La condición fundamental para que tengan actividad vitamínica es que tengan cerrado y sin oxidar al menos uno de los anillos de los extremos de la estructura. Licopeno, zeaxantina y luteínano tienen valor como vitamina A, aunque son muy importantes como pigmentos, y pueden tener también actividad como antioxidantes.

  5. Annato (Bixa orellana L)

  6. Bixin (Apocarotenoide) Achiote (Mexico), Urucum (Brasil). también: roucou, onato, bija, orlean, … Extracción tradicional en proceso acuoso a alta temperatura Bixin es soluble en grasa pero no en agua; tratada con alcali, Se hidroliza el ester metílico para producir: norbixin, (dicarboxilic) que es soluble en agua.

  7. Method of removing pigment from annatto seed United States Patent 4204043 EXAMPLE Bixa seeds (36 seeds, approximately 2.5 g), harvested one day earlier near San Isidro, Costa Rica, Placed in a 250 ml flask with 60 ml of water and 0.1 g of Spark-L (a pectinase produced by Miles Laboratories, Elkhart, Ind., containing polygalacturonase and pectinesterase). The flask was stirred occasionally over a period of 18 hours at ambient temperature (22°-25° C.). The contents of the flask had a good odor with no indication of fermentation having occurred. The aqueous dispersion of the annatto was decanted from the seeds. As a control, the procedure described above was repeated without addition of enzyme. Removal of Pigment Treatment From Seed (%) : Water & pectinase 70% Water (control) 10%

  8. Astaxantina (4-5 veces más eficiente) Astaxanthin is produced by microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans, and the feathers of some birds.$2000-4000 US/Kg Salmón: 35-75 mg/Kg alimento (10-15% costo dieta) astaxanthin MERCADO DE ALGUNOS CAROTENOIDES capsanthin b-Caroteno: sintético: $750 US/Kg natural: $1800 US/Kg ß-carotene Cenpazuchil lutein zeaxanthin Cantaxantina: $1500 US/Kg canthaxanthin

  9. Amounts of astaxanthin found in different organisms[7] Haematococcus pluvialis (0.5-2% dry weight) Phaffia rhodozyma Adonis aestivalis (200-350 mg/flower) Brevibacterium lacticola

  10. INDIGO • The world largest selling textile dye (by vol): 13, 000 ton/year with a value of $200 million dollars. • From Mollusks genus Murex • European woad plant: Isatis tinctoria • Asian: Indigofera tinctoria • 1883 Adolf von Baeyer (chemical structure) Nobel prize. • 1897 BASF--- chemical synthesis • Genencor recombinant E. coli with 9 genes cloned. • Genencor indigo: more expensive than synthetic product

  11. Cochineal: the best natural pigment (carminic acid) Insects of the families: Coccoides Aphidoides Porphyropera hameli: (Armenian Re) grows in grasses of Azerbaijan Kermococcusvermilis: (Kermes: grows in oaks) Margarodespolonius: (roots of a grass in various trees in India & Malaysia) Dactylopiuscoccus: (cacti: Opuntia)

  12. 80,000 – 100,000 insects/Kg of raw dried cochineal (22% of their dry weight) Today’s production only a small fraction of thet in XVI-XIX centuries (eg. Canary islands alone produced 3000 ton in 1875). Extracted with hot water Treatment with protease ----- “carmines of cochineal”. Strawberry ---- blackcurrent.

  13. According to the World Health Organization, dietary vitamin A deficiency (VAD) causes some 250,000 to 500,000 children to go blind each year. More than half those who lose their sight die within a year. VAD compromises the immune systems of approximately 40 percent of children under five in the developing world, greatly increasing the risk of severe illnesses from common childhood infections. VAD is most severe in Southeast Asia and Africa. • has become a staple food in many African countries. Globally, rice grain is the world's most important source of human food-feeding more than half of the world's population. Rice is a good provider of calories and protein, but rice scientists have long recognized its micronutrient deficiencies. Milled white rice contains essentially no beta-carotene and unmilled brown rice contains a very small amount. • Public rice research institutions in the Philippines, Vietnam, India, Bangladesh, China and Indonesia are in various stages of leading efforts to develop locally adapted Golden Rice varieties.*

  14. LOS PARADIGMAS En el arroz no se expresa la Fitoeno sintasa. La primera variedad tenía el gene del narciso y la fitoeno desaturasa de la bacteria Erwinia pseudonarcissus. La nueva variedad tiene la sintasa del maíz y contiene mas de 30mg de b-caroteno por g de arroz.

  15. lycopene More than 250 million sub-Saharan Africans rely on the cassava, a starchy tuber native to South and Central America, as their staple food. Cassava supplies 38.6% of the caloric requirements in some parts of Africa, where hunger and nutrient deficiencies grip the populace and more than 40% of global cassava production takes place. Launched in July 2005 with $7.5 million from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health Initiative, the program’s overarching goal is to develop what essentially amounts to a super-charged cassava plant variety—one with increased levels of iron, zinc, protein, vitamins, and resistance to the cassava mosaic and brown streak viruses plaguing African farmers.

  16. Cassava ß-Carotene is a dietary precursor of vitamin A that is synthesized by the methylerythritol phosphate (MEP) pathway in plastids of some plant cells. Conventional cassava roots lack some of the essential enzymes necessary to produce ß-carotene. The initial step in the pathway is controlled by deoxyxylulose-5-phosphate synthase (DXS), which is added to Cahoon’s cassava via the gene dxs , originally sourced from a different plant species. Additional steps generate the C5 isopentenyl diphosphate (IPP) that is used as the building block for the synthesis of the C20 geranylgeranyl diphosphate (GGDP). Phytoene synthase (PSY), the product of an introduced gene (psy) from a bacterial source, combines two molecules of GGDP to form phytoene, which is converted to ß-carotene via lycopene through a series of desaturation, isomerization, and cyclization reactions. The end result is a noticeably more orangey cassava root.

  17. Arabidopsis gene, 1-deoxy-d-xylulose 5-phosphate synthase (dxs), which regulates the isoprenoid pathway, a set of biochemical reactions further upstream from the biosynthetic step in which psy is involved. Inserting dxs, which increases the amount of chemical precursors to beta-carotene, was “like turning up the whole isoprenoid pathway,” Cahoon says. He found that inserting both the psy and dxs genes resulted in a cassava even more orange than the roots with only the psy modification—and with 30 times more beta-carotene than normal roots. The BioCassava Plus program has also recently seen significant progress in its goal to introduce biofortified foods into the developing world. Director Richard Sayre says that the program’s pro-vitamin A cassava plants have been approved for field trials in Nigeria, the world’s number one consumer of the food. In July, the country planted between 4000 and 8000 m2 with Cahoon’s two-gene GM cassava, the first GM product Nigeria has field tested. “We are quite proud of that,” Sayre says. To advance the BioCassava Plus program to the next stage, Sayre says that more donor money will be needed. He says that the program is “planning on approaching other donors,” but declined to name them.

  18. Capsicum flour 30% Ethanol extraction Capsaicinoids (62%) Carotenoids (1.4%) 96% Ethanol extraction 96% Ethanol extraction Capsaicinoids (80%) Carotenoids (73%) Capsaicinoids (27%) Carotenoids (83%) Residual flour Residual flour Capsaicinoids (26%) Carotenoids (70%) Residual flour 0 Aqueous enzymatic treatment Capsaicinoids (15%) Carotenoids (0%) 30% Ethanol extraction Capsaicinoids (44%) Carotenoids (2%) 96% Ethanol extraction

  19. M e O O C H 3 H O N H C H 3 Capsaicinoides • Compuestos causantes de la pungencia en los chiles (Capsicum annuum). • Estimulantes en el tracto digestivo, bloqueadores de la transmisión del dolor y promueven el metabolismo energético. • Aplicaciones: Condimentos alimenticios, industria del tabaco, repelentes de protección personal y en compuestos para la agricultura, pinturas marinas, medicamentos contra el dolor. Capsaicina Santamaría R., Reyes Duarte M.D., Barzana E., Fernando D., Gama F.M., Mota M. & Lopez- Munguía A., Journal of Agricultural and Food Chemistry, 48, 7, 3063-3067, 2000.

  20. Generalidades • Receptor de capsaicinoides (Caterina y col. Nature, 1997) Estructura de los capsaicinoides y su pungencia • Análisis sensorial medido en unidades Scoville • Cuantificación en ppm por HPLC • Modelo de Jancsó-Gabor

  21. a (%) Enzimas Conversión (b) Lipasas Novozym 677 BG 0.3 Lipasa F 1 Esterasa Diversa 001 8 Novozym 435 30 (c) Proteasas Tripsina 0.05 Penicilino acilasa 0.1 a Conversión de hidrólisis de capsaicina en agua, cuantificando la vainillinamina producida después 24 h de reacción a (b) 45 ºC y (c) 37 ºC. Resultados Conversión de capsaicina en agua utilizando diferentes enzimas

  22. Reacción de hidrólisis de la capsaicina M e O O H O 2 C H 3 H O N H Enzima hidrolítica C H 3 Capsaicina M e O O C H + H O H O N H 3 2 C H 3 Vainillinamina Acido 8-metil-6-trans-nonanenoico Reyes- Duarte D., Castillo E. Bárzana E. & López-Munguía A. Biotechnology Letters. 22 :1811-1814, 2000.

  23. Síntesis de N-vainillíl oleamida :Efecto de la amina terciaria H C O H C O 3 3 l C H + N + N H O N H H O N H H C l 2 2 V a i n i l l i n a m i n a D I P E A H C O O 3 A c i d o o l e i c o N H O L i p a s a B d e H C a n d i d a a n t a r c t i c a N-Vainillíl oleamida (olvanil) Reyes D.D., Castillo E., Martinez R. & López Munguía A. Biotechnology Letters 24, 2057-2061. 2002.

  24. Síntesis enzimática de capsiato en un solo sistema • Alcohólisis • Hidrólisis y síntesis Vainillinalcohol Lipasa B de Candida antarctica Capsaicina Capsiato Vainillinamina

  25. Efecto de la capsaicina y sus derivados en el canal de calcio T de células espermatogénicas y la relación con su pungencia • Sensorialmente, la capsaicina es pungente, su hidrolizado no, ni tampoco el capsiato.

  26. Síntesis de Análogos de la Capsaicina Síntesis de amidas con altos rendimientos (>80%) en 2M2B (solvente polar) independientemente de la estructura del análogo. 2 análogos con actividad pungente

  27. Análogos de capsaicina : inhibidores de canales Ca2+ T-type Síntesis de Capsiato Síntesis de Olvanil

  28. Evaluación farmacológica (Colaboración con Alberto Darszon e Ignacio López) inhibidores de canales Ca2+ T-type

  29. Síntesis quimoenzimaticadel Fenil-acetil-rinvanil

More Related