Loading in 5 sec....

Hirschegg’06: Astrophysics and Nuclear StructurePowerPoint Presentation

Hirschegg’06: Astrophysics and Nuclear Structure

- 88 Views
- Uploaded on
- Presentation posted in: General

Hirschegg’06: Astrophysics and Nuclear Structure

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Low-Lying resonant states in 9Be

María José García Borge

Århus-Göteborg-ISOLDE-Madrid-York Collaborations

Outline:

Motivation

Asymmetries in A= 9 isobar

Excited states in 9Be accessible in the -decay of 9Li

Summary andOutlook

Eexc (9Be)

Q

Why study -decay of Light Nuclei ?

- “Exact” A-body calculations possible for A12
reaching lowest energy states for I ≤ 9/2

- Green Funtion Monte-Carlo methods
- Non-core Shell-model

- Asymetries in mirror beta transitions
- The (n,)9Be + 9Be(,n)12C
Competes with triple- in

n-rich scenarios

- Importance of the + n 5He(, )9Be

- Experimentally -decay provides
- a clean way to feed unbound states
- Break-up mechanism not fixed by kinematics

b+ : p→n + e+ +

b- : n→p + e- +

E.C. : p + e-→n +

ft-

ft+

n

p

n

p

Systematics of experimental values (A40)

- Isospin symmetry breaking
- asymmetry in mirror b-decays

= 4.8 (4) %

Thomas et al., AIP Conf. Proc 681, p. 235

- Charge independence hypothesis of nuclear interactions
- symmetry of analog btransitions

Large asymmetries

δ ≈ 3

δ=1.2±0.5

δ ≈ 0

Nyman et al., NPA 510 (1990) 189

Mikolas et al., PRC 37 (1988) 766

F. Ajzenberg-Selove, NPA 490 (1988) 1

9Li

n

C-foil

Experimental technique for multiparticle detection

- ISOL method
- point-like pure sources

- -decay to populate state of interest
- clean and selective

- Use DSSSDs for complete kinematics
- Large solid angle (rare events)
- High Segmentation (avoid summing)
- Effective Readout

9B high excited states

- Sequential Decay of 12.2 MeV State via 8Be(gs), 8Be(2+), 5Li(gs) and 5Li(1/2)
- R-Matrix-formalism applied.
- MC-simulations to account for efficiencies of each channel
- ResultsE: 12.19(4) MeV
- : 450(20) keV
- J: 5/2
- BGT: 1.20(15)
- U.C. Bergmann et al., Nucl. Phys. A692 (2001) 427

IAS

Esum(MeV)

Esum (MeV)

Ep,,(keV)

Fit of the angular distribution

breakup the 5He(3/2-) channel

Rev. Mod. Phys. 25 (1953) 729

9Li

9Be

3/2-

Possible spins:

5/2 A2=-0.714

3/2 A2=0

1/2 A2=1

n

5He

?(-)

3/2-

13.257

=0.45

5/2-

= 3.4(7)

δ ≈ 3

5/2-

δ=1.2±0.5

54.1(15)%

= 0.032(3)

δ ≈ 0

PLB576 (2003)55

NP A692(2001)427

3/2-

(1/2,5/2)-

(1/2)-

3/2-

3/2-

Mikolas et al., PRC 37 (1988) 766

Nyman et al., NPA 510 (1990) 189

F. Ajzenberg-Selove, NPA 490 (1988) 1

5He

8Be(2+)

Fit

Fit

Data

Data

E*= Esum + 1.57 MeV

Esum < 0.9 MeV

8Be(gs)

R-Matrix formalism

Tail through 5He(gs)

0

0.3

0.6

E (MeV)

Hyper-spherical harmonics

Bochkarev , Sov J. Nucl. Phys. 52 (1990) 964

0

0.3

0.6

E (MeV)

5He

8Be(2+)

7.94 MeV Level

6 Esum 7 MeV

J = 5/2

(e,e’p) Unpbl.

Tilley,NPA745(04)155

8Be(g.s.)

2.78 MeV level

0.9 Esum 1.3 MeV

J = 1/2

Missing Intensity

E, MeV

- Sequential Decay
- 11.81 MeV State8Be(gs), 8Be(2+), 5He(gs), 5He(1/2-), 8Be(4+)
- 7.94 MeV State
5He(gs), 8Be(gs)

- 2.78 MeV State
8Be(2+), 5He(gs)

2.48 MeV state(Bocharev et al., Sov. J. Nucl. Phys. 52(90)964)

- 7.94 MeV State
- R-Matrix-formalism applied.
- MC-simulations to account for efficiencies of each channel

Incoherent sum of all channels

J= 3/2

Elevel = 5.0(5) MeV, = 2.0(2) MeV

3 Esum 4 MeV

1.8 E1 + 0.7 Esum 1.8 E1 + 1.1

Elevel = 5 MeV, = 2 MeV, J = 3/2-

Elevel = 5 MeV, = 2 MeV, J = 3/2-

Shell Model

(p,p’) @ 180 MeV

Mikolas et al., PRC 37 (1988) 766

Elevel = 5.6(1) MeV, = 1.33(36) MeV, J = 3/2-

Dixit et al., Phys. Rev. C 43(91)1758

New

Level

Singles

Langevin et al.,Nucl. Phys. A366 (1981) 449

Nyman et al., Nucl. Phys. A510 (1990) 189

- FUTURE:
- Break up of the 2.43 MeV level in 9Be
- 11Li: Disentangle the breakup of the 18.1 MeV state in 11Be
- Comparison of BGT distribution between 11Li and its core 9Li

- The beta-decay asymmetry in the A= 9 isobar system studied
- for the gs and high excited ( 12 MeV) states in 9Be & 9B
- 12MeVSequential breakups for p and n
- Confirmed large asymmetry = 3.4 (1.0)
- Beta asymmetry to the g.s. negligible must be due to
- differences in the structure of the two final state resonances

- The low lying resonance states in 9Be have been investigated via -delayed particle emission from 9Li.
- Angular correlations used for firm spin determination
- First exp. determination of the J=1/2 character of 2.78 MeV State
- Firm assignment of J=5/2 for the 7.94 MeV

- Confirmation of broad 3/2- state at 5 MeV, = 2 MeV
- Evidence of the contribution of decay via 5He(g.s.)

- Angular correlations used for firm spin determination

Århus University

C.Aa. Diget

H.O.U. Fynbo

H. Jeppesen

K. Riisager

U. Bergmann

Chalmers Univ of Technology

B. Jonson

M. Meister

G. Nyman

T. Nilsson

K. Wilhelmsen

Inst. Estructura

de la Materia

L.M. Fraile

Y. Prezado

O. Tengblad

University

of York

B.R. Fulton