1 / 25

Nucleus-nucleus collisions at the future facility in Darmstadt -

Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI. Peter Senger. Outline:  Dense baryonic matter: fundamental physics  Experimental observables  Technical challenges and (possible) solutions.

Download Presentation

Nucleus-nucleus collisions at the future facility in Darmstadt -

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Peter Senger Outline:  Dense baryonic matter: fundamental physics Experimental observables Technical challenges and (possible) solutions

  2. States of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon plasma (pion production) Neutron stars Early universe

  3. Exploring the phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI (SIS300): moderate temperature, high baryondensity

  4. B  3-80 , T  130 MeV Fundamental questions:  Equation-of-state at high densities: stability of neutron stars, supernova dynamics  deconfinement In-medium hadron properties: chiral symmetry restoration, origin of hadron masses?

  5. Creating high baryon densities in the laboratory by heavy-ion collisions Transport calculations B. Friman, W. Nörenberg, V.D. Toneev Eur. Phys. J. A3 (1998) 165 SIS300

  6. Pion multiplicities per participating nucleons SIS100/300

  7. Experimental situation : Strangeness production in central Au+Au and Pb+Pb collisions Experimental situation : Strangeness enhancement ? New results from NA49 (CERN Courier Oct. 2003) SIS 100 300 SIS 100 300 Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902

  8. “Flow generated by extra pressure generated by partonic interactions in the early phase of a central Au+Au/Pb+Pb collision” Comparison of experimental data to results of transport codes E.L. Bratkovskaya, W. Cassing, M. van Leeuwen, S. Soff, H. Stöcker, nucl-th/0307098

  9. C. R. Allton et al, hep-lat 0305007 liquid gas coexistence B  6 0 B  0.3 0 Lattice QCD : maximal baryon number density fluctuations at TC for q = TC (B  500 MeV) Mapping the QCD phase diagram with heavy-ion collisions P. Braun-Munzinger Analysis of particle ratios with statistical model: chemical freeze-out SIS300 baryon density: B  4 ( mT/2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

  10. CBM physics topics and observables 1. In-medium modifications of hadrons onset of chiral symmetry restorationat high B measure: , ,   e+e- open charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, , , ,  3. Indications for deconfinement at high B anomalous charmonium suppression ? measure:J/, D softening of EOS measureflow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ?? Note: In heavy ion collisions (, ,  )  e+e- not measured from 2 – 40 AGeV J/ not measured below 158 AGeV D mesons not measured at all

  11. n p p    ++ r e+ K e- Looking into the fireball … … using penetrating probes: short-lived vector mesonsdecaying into electron-positron pairs

  12. Measure spectral functions of vector mesons via their decay into electron-positron pairs (penetrating probes!)using Ring Imaging Cherenkov detectors HADES @ GSI NA45/CERES @ CERN-SPS CH4 radiator gas: thr= 32 C4F10 radiator gas: thr= 18.3 UV-det.: fast CsI cathode

  13. Invariant mass of electron-positron pairsfrom Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017 ≈185 pairs!

  14. Anomalous suppression of charmonium (J/) ??? Signatures of the quark-pluon plasma?

  15. J/ experiments: a count rate estimate 10 50 120 210 Elab [GeV] central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb J/ multiplicity 1.5·10-5 1·10-3 beam intensity 2·108/s 2·107/s interactions 8·106/s (4%) 2·106/s (10%) central collisions 8·105/s 2·105/s J/ rate 12/s 200/s 6% J/e+e- (+-) 0.7/s 12/s spill fraction 0.8 0.25 acceptance 0.25  0.1 J/ measured 0.14/s  0.3/s  8·104/week 1.8·105/week

  16. Charmed mesons D meson production in pN collisions Some hadronic decay modes D(c = 317 m): D+  K0+(2.90.26%) D+  K-++ (9  0.6%) D0(c = 124.4 m): D0  K-+ (3.9  0.09%) D0  K-+ + - (7.6  0.4%) experimental challenges: low production cross section large combinatorial background measure displaced vertex with resolution of  30m

  17. Meson production in central Au+Au collisions W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745 SIS100/ 300 SIS18

  18. The experimental program of CBM: Observables: p, , K, , , , , , , , D, J/ (3-diff. cross sect., correlations, dileptonic decays) exotica: strange clusters, pentaquarks, … Collision systems: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Accelerator: SIS300 High beam intensity and duty cycle, Excellent beam quality, no halo ! Available for several month per year

  19. Experimental challenges Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400 - 400 + 44 K+ 13 K-  107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target)  determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons

  20. The CBM Experiment  Radiation hard Silicon pixel/strip detectorsin a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 105  Hadron identification: RPC, RICH  Measurement of photons, π, η, and muons: electromagn. calorimeter (ECAL)  High speed data acquisition and trigger system

  21. CBM in GEANT4

  22. CBM R&D working packages Feasibility, Simulations Design & construction of detectors Data Acquis., Analysis GEANT4: GSI Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Krakow Univ. LBNL Berkeley Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna KFKI Budapest Silesia Univ. ,ω, e+e- Univ. Krakow JINR-LHE Dubna D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague Straw tubes JINR-LPP, Dubna PNPI Gatchina FZ Rossendorf FZ Jülich Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg Analysis GSI Darmstadt, Heidelberg Univ, J/ψ e+e- INR Moscow ECAL ITEP Moscow GSI Darmstadt RPC-TOF LIP Coimbra, Univ. Santiago de Com., Univ. Heidelberg, GSI Darmstadt, NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow RICH IHEP Protvino GSI Darmstadt Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna Magnet JINR-LHE, Dubna GSI Darmstadt

  23. CBM Participation in EU Programmes: • EU FP6 Hadron Physics • (2004 – 2006) • Joint Research Projects (approved): • Fast gaseous detectors • Advanced TOF Systems • Future DAQ and trigger systems • Network activities (approved): • CBMnet • INTAS-GSI (2004-2005) • approved projects: • Transition Radiation Detectors • JINR LHE Dubna, NC PHEP Minsk, • INFN Frascati, GSI Darmstadt • Straw tube tracker: • JINR LPP Dubna, LPI Moscow, • PNPI Gatchina, TU Warsaw, • FZ Rossendorf, FZ Jülich • Resistive Plate Chambers • INR Troitzk, IHEP Protvino, • ITEP Moscow, LIP Coimbra, • Univ. Heidelberg • Electromagnetic calorimeter • ITEP Moscow, Polimersintez Wladimir, • Univ. Krakow, GSI Darmstadt • New call EU FP6 • (opened Nov.03, closed Mar04): • Design of new facilities • Construction of new facilities

  24. CBM R&D Collaboration : 38 institutions , 15 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna PNPI Gatchina SINP, Moscow State Univ. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ. , Kiev USA: LBNL Berkeley Hungaria: KFKI Budapest Eötvös Univ. Budapest Italy: INFN Catania INFN Frascati Korea: Korea Univ. Seoul Pusan Univ. Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

More Related