1 / 56

Moniulotteinen moniydin NMR-spektroskopia Proteiinien rakennetutkimusmenetelmä

t 2. I. S. t 1. Moniulotteinen moniydin NMR-spektroskopia Proteiinien rakennetutkimusmenetelmä. NMR-spektroskopian perusteet. B ( t ). M + ( t ). t. M ( t ). t. NMR-spektroskopian teoriaa. H ( t ). B ( t ). M + ( t )  Tr{ s ( t ) F + }. M + ( t )  Tr{ s ( t ) F + }. M + ( t ).

shae
Download Presentation

Moniulotteinen moniydin NMR-spektroskopia Proteiinien rakennetutkimusmenetelmä

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. t2 I S t1 Moniulotteinen moniydin NMR-spektroskopiaProteiinien rakennetutkimusmenetelmä

  2. NMR-spektroskopian perusteet B(t) M+(t) t M(t)

  3. t NMR-spektroskopian teoriaa H(t) B(t) M+(t) Tr{s(t)F+} M+(t)  Tr{s(t)F+} M+(t) s(t) M(t)

  4. Odotusarvo Y(t) c3(t) c2(t) c1(t) Tiheysmatriisi

  5. B(t) M+(t) t M(t) Odotusarvo Poikittainen magnetisaatio

  6. B(t) M+(t) t M(t) Odotusarvo Poikittainen magnetisaatio

  7. Tiheysoperaattorin liike Schrödingerin yhtälö Y(t) c3(t) c2(t) c1(t)

  8. Tiheysoperaattorin liikeyhtälö Liouville-von Neumann yhtälö

  9. Ratkaisu Liouville − von Neumann yhtälö

  10. B3 s(t) b3(t) b2(t) B2 b1(t) B1 Tiheysoperaattorin liike Tiheysoperaattori kantaoperaattoreina Kantaoperaattorit

  11. Vuorovaikutukset Liike

  12. Vuorovaikutukset Liike

  13. I rf-pulssi

  14. Prekessio B0-kentässä I t1

  15. Kytkentä t I t1 S

  16. 15N-1H korrelaatiokoe

  17. 15N-1H korrelaatiospektri

  18. H N Ca CO Gz 15N-13Ca-1H korrelaatiospektri

  19. Kolmiulotteinen korrelaatiospektri

  20. Informaatiota kolmiulotteisesta rakenteestaLyhyet protoni-protoni etäisyydet

  21. Informaatiota kolmiulotteisesta rakenteestaDiedrikulmat

  22. d D Informaatiota kolmiulotteisesta rakenteestaSidossuunnat

  23. JHACA JHACO JHAN JHAN JCACO JCACB JHACB Sidossuunntien määrittäminenjäännösdipolikytkennöistä Esim.

  24. 2CazC’z 2CazC’z 2CayC’z 2CayC’z JCaC’ Cax JCaC’ Cax t3 t1 Ca t2 C’ N Gz w w JHACO-kytkennän mittaus Ha

  25. JHACO JCACO JCACO ja JHACO-kytkentöjen mittaus CO Ha

  26. Kolmiulotteisen rakenteen määrittäminen SA

  27. Rakenteettomien proteiinien rakenteista

  28. “PrP Gedanken experiment” Burns CS, et al. Biochemistry. 2002 41, 3991-4001. , Biochemistry. 2002 42, 6794-6803.

  29. Simuloidut jäännösdipolikytkennät

  30. How to use Residual Dipolar Couplings to study Flexible Protein Segments − A Practical Guide

  31. How to use Residual Dipolar Couplings to study Flexible Protein Segments − A Practical Guide

  32. t2 I S t1 Moniulotteinen moniydin NMR-spektroskopiaProteiinien rakennetutkimusmenetelmä

  33. Odotusarvo B(t) M+(t) t M(t) Beff(t) t

  34. Moniulotteinen moniydin NMR-spektroskopiaProteiinien rakennetutkimusmenetelmä

  35. Moniulotteinen moniydin NMR-spektroskopiaProteiinien rakennetutkimusmenetelmä

  36. Shortle D. and Ackerman M.S. Persistence of native-like topology in a denatured protein in 8 M urea.Science. 2001 293, 487-9.  RDCs = 0 RDCs  0 RDCs 0 Sign Size Form Variation

  37. Origin of RDCs from a flexible segment The elongated conformation will fit closer to the wall. There is more volume for the elongated conformation. Concentration of the elongated conformation is higher! RDCs are biased towards elongated conformations!

  38. n l Q N-n Random-flight chainA model of a denatured protein z

  39. PolyGlu Terminus PolyGlu Center Sign Size Form Variation Calculated alignments for chains Pro Glu Gly Sign Random Flight

  40. On obstruction induced conformational changesDoes the medium perturb the ensemble?

  41. n Q Q z Calculation of segmental alignments with and without conformational changes With Without z

  42. Sign Sign Sign Size Size Size Form Form Form Variation Variation Variation JHACA JHACO JHAN 21-mer polyglutamate JHAN JCACO JCACB JHACB No evidence of conformational changes Expected results on the basis of calculations With Without

  43. Sign Size Form Variation What is the source of variation in RDCs? Variation in flexibility? Glu/Pro/Gly

  44. What is the source of variation in RDCs? Variation in amino acid orientations? Asp Glu Asp Ser Glu Glu Cys Glu Ser Cys

  45. Sign Size Form Variation What is the source of variation in RDCs? Variation in amino acid orientations? Asp Glu Asp 2x Ser Glu Glu Cys Glu Ser Cys

  46. Sign Sign Size Size Form Form Variation Variation What is the source of variation in RDCs? Variation due to local structures? Asp Glu Glu Ser Glu Asp Cys Glu Cys Ser low pH

  47. Sign Size Form Variation What is the source of variation in RDCs? Variation due to motifs? Glu Glu Ser Asp Ser Cys Asp Glu Cys Glu

More Related