Подход эффективного гамильтониана
Download
1 / 19

1 . М. С. Лифшиц, ЖЭТФ ( 1957 ). 2 . U.Fano, Phys. Rev. 124, 1866 (1961). - PowerPoint PPT Presentation


  • 204 Views
  • Uploaded on

Подход эффективного гамильтониана. 1 . М. С. Лифшиц, ЖЭТФ ( 1957 ). 2 . U.Fano, Phys. Rev. 124, 1866 (1961). 3 . H. Feshbach,, Ann. Phys. (New York) 5 (1958) 357 ; 19 (1962) 287. 4 . C. Mahaux, H.A. Weidenmuller, ( Shell-Model Approach to Nuclear

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' 1 . М. С. Лифшиц, ЖЭТФ ( 1957 ). 2 . U.Fano, Phys. Rev. 124, 1866 (1961).' - selena


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Подход эффективного гамильтониана

1. М. С. Лифшиц, ЖЭТФ (1957).

2. U.Fano, Phys. Rev. 124, 1866 (1961).

3. H. Feshbach,, Ann. Phys. (New York) 5 (1958) 357; 19 (1962) 287.

4. C. Mahaux, H.A. Weidenmuller, (Shell-Model Approach to Nuclear

Reactions), North-Holland, Amsterdam, 1969.

5. I.Rotter, Rep. Prog. Phys., 54, 635 (1991).

6. S.Datta, (Electronic transport in mesoscopic systems) (1995).

7. S. Albeverio, et al J.Math. Phys. 37, 4888 (1996).

8. Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918 (1997)

9. F. Dittes, Phys. Rep. (2002).

10. Sadreev and I. Rotter, J.Phys.A (2003).

11. J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374, 271(2003).

12. D.V. Savin, V.V. Sokolov V.V., and H.-J. Sommers, PRE (2003).

13. Sadreev, J.Phys.A (2012).

  • Coupled mode theory (оптика)

H.A.Haus, (Waves and Fields in Optoelectronics) (1984).

C. Manolatou, et al, IEEE J. Quantum Electron. (1999).

S. Fan, et al, J. Opt. Soc. Am.A20, 569 (2003).

S. Fan, et al, Phys. Rev. B59, 15882 (1999).

W. Suh, et al, IEEE J. of Quantum Electronics, 40, 1511 (2004).

Bulgakov and Sadreev, Phys. Rev. B78, 075105(2008).


Coupled defect mode with propagating over waveguide light гамильтонианаManolatou, et al, IEEE J. Quant. Electronics, (1999)


Coupled mode theory

Одно модовый резонатор гамильтониана

Coupled mode theory


Инверсия по времени гамильтониана

Одно-модовый резонатор

CMT

  • Х. Хаус, Волны и поля в оптоэлектронике


CMT гамильтониана

  • Много-модовый резонатор

IEEE J. Quantum Electronics, 40, 1511 (2004)


Два порта, две моды гамильтониана

%CMT for transmission through resonator with two modes

clear all

E=-2:0.01:2;

D=[sqrt(0.1) sqrt(0.25)

sqrt(0.1) sqrt(0.25)];

G=0.5*D'*D;

H0=diag([-0.25 0.25]);

H=H0-1i*G;

for j=1:length(E)

Q=E(j)*diag([1 1])-H;

in=[1; 0];

IN=1i*D'*in;

A=Q\IN;;

A1(j)=A(1); A2(j)=A(2);

t(:,j)=-in+D*A;

end


T гамильтонианаволновод с двумя резонаторами, Булгаков, Садреев, Phys. Rev. B84, 155304 (2011)


W is matrix NxM where N is the number of eigen states of closed quantum

system, M is the number of continuums (channels)


S.Datta, ( closed quantumElectronic transport in mesoscopic systems) (1995).


Проекционные операторы closed quantum:

Уравнение Липпмана-Швингера


S matrix
S-matrix closed quantum

Basis of closed billiard

The biorthogonal basis


c closed quantum

H.-W.Lee, Generic Transmission Zeros and In-Phase Resonances

in Time-Reversal Symmetric Single Channel Transport,

Phys. Rev. Lett. 82, 2358 (1999)


2d case
2d case closed quantum

Limit to continual case


Matlab calculation

Na=input('input length along transport Na=') closed quantum

Nb=input('input length cross to transport Nb=')

Nin=input('input numerical position of the input lead Nin=')

Nout=input('input numerical position of the output lead Nout=')

NL=length(Nin); NR=length(Nout);

vL=1;vR=vL;tb=1;

%Leads

E=-2.9:0.011:1;

HL=zeros(NL,NL);

HL=HL-diag(ones(1,NL-1),1);

HL=HL+HL';

HL=HL-diag(sum(HL),0);

for np=1:NL

kpp=acos(-E/2+EL(np,np)/2);

kp(np,1:length(E))=kpp;

end

HR=HL;

%Dot

N=Na*Nb;

HB=zeros(N,N);

HB=HB-diag(ones(1,N-1),1)-diag(ones(1,N-Na),Na);

HB(Na:Na:N-Na,Na+1:Na:N-Na+1)=0;

HB=tb*(HB+HB');

%Coupling matrix

psiBin=psiB(Nin,:); psiBout=psiB(Nout,:);

WL=vL*psiBin'*psiL';

WR=vR*psiBout'*psiL';

DB=diag(ones(Na*Nb,1));

for j=1:length(E)

g=diag(exp(i*kp(:,j)));

gg=diag(sin(real(kp(:,j))).^0.5);

WW=WL*g*WL'+WR*g*WR';

Heff=diag(EB)-WW;

QQ=DB*E(j)-Heff;

PP=QQ^(-1);

SS=2*i*(WL*gg)'*PP*WR*gg;

t(n,j)=SS(1,1);

psS=psiB*PP*WL;

Matlab calculation



Effective hamiltonian for time periodic case

For stationary case closed quantum

l

Effective Hamiltonian for time-periodic case


Волновая функция полубесконечного m-го провода

N=1


Numerical results n 1

m=-1, 0, 1 полубесконечного

21 quasi energies

Numerical results N=1

l=0.75, vC=0.25

H. Fukuyama, R. A. Bari, and H.C. Fogedby, PRB (1973).

BS, J. Phys. C (1999): Критерий применимости теории возмущений


ad