a new for exoplanet imaging
Download
Skip this Video
Download Presentation
A New for Exoplanet Imaging

Loading in 2 Seconds...

play fullscreen
1 / 40

A New for Exoplanet Imaging - PowerPoint PPT Presentation


  • 200 Views
  • Uploaded on

GAIA-ESF Workshop – November , 5th 2012, Torino. A New for Exoplanet Imaging. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' A New for Exoplanet Imaging' - sela


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
a new for exoplanet imaging

GAIA-ESF Workshop – November, 5th 2012, Torino

A New for Exoplanet Imaging

GaëlChauvin

- IPAG/CNRS -

Institute of Planetology & Astrophysics of Grenoble/France

Collaborations: J.-L. Beuzit, A.M. Lagrange, D. Mouillet, J. Rameau & P. Delorme (IPAG/Fr); S. Desidera, D. Mesa & R. Gratton (Oss. Padova/It); A. Boccaletti, R. Galicher, D. Rouan & P. Baudoz (LESIA/Fr); D. Apai (Uv. Arizona/US); M. Meyer, S. Quanz & M. Reggianni (ETHZ)/Swi); M. Bonnefoy, W. Brandner & C. Mordasini (MPIA/Ger); C. Moutou, A. Zurlo& A. Vigan (LAM/Fr); J. Girard, C. Dumas, , J. Milli, D. Mawet & M. Kasper (ESO); S. Udry, J. Hagelberg (Geneva/Swi)…

slide2

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino

slide3

I- Introduction

PlanetHunting Techniques

 Radial Velocity

. Indirect technique: Doppler shift

(Targets: quiet stars; activity)

. Orbital & Physical properties:

> Mp.sin(i), P, e, a, ω &T0

> Spin-Orbit Alignment

> Architecture & Stability

> exo-Earths & Habitable Zone

Dumusque et al. 12; Triaud et al. 11

. Statistics: more than 800 exoplanets

> Occurrencedown to Super-Earths

> Planetary host: Fe/H & binarity

De Sousa et al. 11; Udry & Santos 07

http://exoplanet.eu/

slide4

I- Introduction

PlanetHunting Techniques

 Transit

. (In)direct technique: 1ary/2ary eclipse.

(Targets: quiet stars; activity; crowded fields)

. Orbital & Physical properties:

> R*/Rp, Mp, P, a, i, T0

> Planetary Interiors

> Multiple: Architecture & Stability

> Circumbinary planets

Leger et al. 09; Doyle et al. 11; Balatha et al. 12

. Transmission/emission spectroscopy

> Composition (H20, CO, NaI, KI... Haze)

> Vertical T-P structure, atmospheric

circulation & evaporation

Swain et al. 08; Knutson et al. 09; Desert et al. 12

http://exoplanet.eu/

slide5

I- Introduction

PlanetHunting Techniques

  • μ-lensing
  • . Indirect technique: Unique Rel. Event
  • (Targets: Crowded fields; probability)
  • . Orbital & Physical properties:
  • > Mp, M*, d‏, P, a (1-5 AU)
  • > Super-Earths
  • . Free-floating, wide orbit planets?
  • Gould et al. 06; Cassan et al. 12

 Astrometry

. Indirect technique: Reflex motion

(Targets: Nearby stars)

. Orbital & Physical properties:

> Mp, P, i, e, a, ω, T0(1-5 AU)

Bean et al. 07, 08; Benedict et al. 02, 10

Muterspaugh et al. 10; Sozzetti et al. 10

http://exoplanet.eu/

slide6

I- Introduction

PlanetHunting Techniques

  • Direct Imaging
  • . Direct technique: Planet’s photons
  • (Targets: young & nearby stars)
  • . Orbital & Physical properties:
  • > L, a, e, i, ω, T0
  • > Giant planets at wide orbits (>10 AU)
  • > Multiple: Architecture & Stability
  • > Planet – disk connection
  • Chauvin et al. 05, 10; Lafrenière et al. 07
  • Soummer et al. 11; Vigan et al. 12
  • . High-contrast spectroscopy
  • > Non-strongly irradiated EGPs
  • > Low-gravity, composition, non-LTE
  • chemistry, cloud coverage...
  • Janson et al. 10; Bonnefoy et al. 09, 12

http://exoplanet.eu/

slide7

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino

slide8

II- Strategy

Imaging: an observing challenge!

Detect/characterize something faint,

angularly close to something bright.

  •  High image quality
  • - High angular resolution, PSF Stability
  • - Calibration of static aberrations
  •  Stellar Halo Brightness ‏
  • - Halo attenuation/PSF subtraction
  • - Speckle noise
  •  Intrinsic companion faintness
  • - Long overall observations;
  • HIP95270 (Tuc-Hor)
  • VLT/NaCo H, 10” by 10”
  • (?)
  • (?)
slide9

II- Strategy

Dedicated Instrumentation

High Angular Resolution

 Spacetelescope

 10m-telescopes + AO system

HST

Gemini S/N

VLT/NACO

LBT/Arizona

Subaru/HiCIAO

Keck

slide10

II- Strategy

Impressive evolution

High Angular Resolution

 Adaptive optics (recover diffraction-limit resolution)

slide11

II- Strategy

The art of PSF subtraction

  • High Contrast at inner angles
  •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles
      •  Coronagraphy
      • - Occulting and Lyot-pupil mask
      • - 4QP Mask, Boccaletti et al. 08
      • - new: PIAAC, ALC, APC& Vortex
      •  Differential Imaging
      • - Polarimetric (PDI)
      • - Spectral (SDI), Close et al. 05
      • - Angular (ADI), Marois et al. 06
  •  Post-processing tools
  • - LOCI, Lafrenière et al. 07
  • - ANDROMEDA,Mugnier et al. 10
  • - KLIP/PCA, Soummer et al. 12

Field Rotation

VLT/NaCo

1“ (i.e [email protected])

slide12

II- Strategy

The art of PSF subtraction

  • High Contrast at inner angles
  •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles
      •  Coronagraphy
      • - Occulting and Lyot-pupil mask
      • - 4QP Mask, Boccaletti et al. 08
      • - new: PIAAC, ALC, APC& Vortex
      •  Differential Imaging
      • - Polarimetric (PDI)
      • - Spectral (SDI), Close et al. 05
      • - Angular (ADI), Marois et al. 06
  •  Post-processing tools
  • - LOCI, Lafrenière et al. 07
  • - ANDROMEDA,Mugnier et al. 10
  • - KLIP/PCA, Soummer et al. 12

Field Rotation

VLT/NaCo

1“ (i.e [email protected])

slide13

II- Strategy

Detection Performances

High Contrast at inner angles

Coronagraphy or SAT-Imaging

combined with ADI, SDI (or PDI)

 Improved performances

inside the IWAs: 0.1-2.0”

Detection Limits:

H-band

Obs. Time ~10min

Star, H = 5-6

(d = 30 pc)‏

Detection Limits:

H-band; Tobs = 60-90 min

Star, H = 5-6

Down to ΔH = 14.0 @1.0”

slide14

II- Strategy

Detection Performances

High Contrast at inner angles

Coronagraphy or SAT-Imaging

combined with ADI, SDI (or PDI)

 Improved performances

inside the IWAs: 0.1-2.0”

Detection Limits:

H-band

Obs. Time ~10min

Star, H = 5-6

(d = 30 pc)‏

Detection Limits:

H-band; Tobs = 60-90 min

Star, H = 5-6

Down to ΔH = 14.0 @1.0”

d = 30 pc, 10 Myr

COND03 Evol. Models

Baraffe et al. 03

slide15

II- Strategy

OptimizedSamples

Young, nearby stars

Age < 200 Myr

. Young, nearby associations

Distance < 100 pc

. access small sma,

. enhanced sensitivity

 Spectral Types: AFGKM

. AF: More massive EGPs?

. M: favorable contrast

 V-band < 10.0 – 12.0

. AO-Full Performance limitation

> All observed by GAIA

NaCo Large Program’s sample,

preparatory mission to SPHERE (Chauvin et al. 10)

slide16

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino

slide17

IV- Key results

Family’s portrait

2M1207

DH Tau

AB Pic

SCR1845

CHXR 73

GJ 758

CT Cha

1RXJS609

GQ Lup

WideorbitPMCs:

- low mass KM stars

- q = 0.02 – 0.2 or Δ > 200 AU

Fomalhaut

Hr8799

Beta Pic

 CloserPMCs:

- A4V-A5V massive primaries

- q < 0.005 ; Δ = 8 - 120 AU

- CS Disk signatures

Ref: Chauvin et al. 04; Itoh et al. 05; Chauvin et al. 05; Biller et al. 05; Luhman et al. 06; Thalmann et al. 09; Lafrenière et al. 08; Neuhauser et al. 05; Schmidt et al. 09; Lagrange et al. 10; Kalas et al. 08; Marois et al. 08,10...

slide18

IV- Key results

OuterGiantPlanet Population

Architecture & Stability

Astrometry & Disk/Planet

Orbits, dynamical interactions, resonances & long-term evolution

Physics of Giant Planets

Photometry & Spectroscopy

Atmosphere

& physical properties

Occurrence & Formation

Statistical properties (occurrence, planetary host dependency, disk properties)

Formation Theories: CA, GI or CF

slide19

IV- Key results

Physics of GiantPlanets

Companion nature?

 PlanetSingle-band photometry

 Stellar properties: d & age

 Evolutionarymodels (Luminosity - Mass)

. β Pictoris b, ΔJ = 10.6+-0.3 mag,

. 12 Myr @ 19.3 pc,

. Mass = 7 – 8 Mjup (“Hot-Start”models)

> However, uncertainties in the model predictions

> Dependence: formation mechanisms , gas

accretion shock & initial conditions

Field Rotation

VLT/NaCo ADI imaging

Marley et al. 07; Mordasini et al. 12

Bonnefoy et al. 12

slide20

IV- Key results

Physicalproperties

Atmosphere

 Planet’s SED

 Stellar properties: d & age

 Synthetic-Grid of spectra

 Atmosphericproperties

. Radiative transfert code

. Dusty Cloud Formation/Sedim.

. Mol. opacity / Non-eqChem.

βPic b,

Teff = 1650 +- 150K, log(g) = 4.0±0.5,

FeH = 0.0±0.5, R = 1.3+-0.2 RJup

> dusty clouds (Lβ-type)

Bonnefoy et al. 12

slide21

IV- Key results

Orbital Properties & Architecture

Imaging Exoplanet’s revolution

 Discovery: Nov 2003

ΔL’ = 7.7 mag, sep = 300 +- 15 mas

 Monitoring campaign: 2008 - now

 Recovery: Oct. 2009

Nov 2003

Oct 2009

Lagrange et al. 09, 10

Bonnefoy et al. 10, Quanz et al. 10

  • N

VLT/NaCo ADI imaging

L’-band, β Pic b

  • 500 mas
  • E
slide22

IV- Key results

Orbital Properties & Architecture

Imaging Exoplanet’s revolution

  •  Discovery: Nov 2003
  • . ΔL’ = 7.7 mag, sep = 300 +- 15 mas
  •  Monitoring campaign: 2008 - now
  • Recovery: Oct. 2009
  • Astrometricfollow-up
  • . VLT/NaCo monitoring 2003 - 2012

Chauvin et al. 12

  • N
  • E
slide23

IV- Key results

Orbital Properties & Architecture

Constraining the orbit

 MCMC Orbital fitting

β Pic b,

P = 17 - 21 yrs

a = 8 - 10 AU

e < 0.17

i = 88.5 +- 1.5 deg

Ω = 212.5 +- 1.5 deg

Chauvin et al. 12

  • N
  • E
slide24

IV- Key results

Orbital Properties & Architecture

Constraining the orbit

 Planet – Disk connection

. main disk, up to 20’’ (1000 AU),

PAMD= 209.5+-0.3deg

. β Pic b

PAβ Pic b= 212.0+-1.3o

> β Pic b in the disk’s warp, Lagrange et al. 12

Main disk

Warp

  • 2“
  • N
  • E
  • N
  • E
slide25

IV- Key results

CA Limit

Formation & Evolution

 In-situCoreAccretiondoes not workat > 20-30 AU

> Core or Disk fragmentation ?

Dodson –Robinson et al. 09; Boley et al. 09

> Innerlimitto the Core or Disk fragmentation?

 Dynamicalevolution & stability

> outward migration (corotation torque), planetscattering & resonances

Crida et al. 09; Scharf & Menou 09

slide26

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino

slide27

V- A New Era

Upcoming instruments (mid-2013),

 GPI, Gemini Planet Finder(MacIntosh et al. 08)

- Fast-high order adaptive optics system

- Interferometricwave front sensing for static aberrations

- NIR-IFU + Apodizedpupil Lyot coronagraph

 VLT/SPHERE (Beuzit et al. 08)

- SAXO, Extreme AO system (ITTM-DM and DTTS, PTTS)

- NIR (YJHK): IRDIS (Dual imaging Spectrograph) and IFU 3D-spectroscopy

- VIS: ZIMPOL (Imaging Polarimeter)

- Coronagraphs: Classical Lyot, A4P and ALC

- GTO of 260 nights; 200 devoted to survey 300 nearby stars

slide28

V- A New Era

SPHERE concept

slide29

V- A New Era

SPHERE Instruments

Coronography: no /4Q / Lyot

Rotation at Nasmyth:

  • Pupil-stab. (instrument fixed wrt tel.)
  • Field-stab (slit spectro, long DIT…)
  • No rotation: minimize crosstalk…)

AO sensitivity for high contrast:

R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS

Separation with improved contrast:

2 - 20 λ/D, ie 30-300 mas in R, or 80 – 800 mas in H

Mode switching: not VIS and NIR in same night

slide30

V- A New Era

Observingwith SPHERE

  • SPHERE Timeline,
    • Fall 12, Tests @IPAG
    • March 13 PAE
    • April 13 Shipping
    • May 13 Integration @Paranal
    • July& Dec 13First Light & Commissioning phase1, 2 & 3
    • March 14CfP 94, offered to the ESO community
    • - All offered mode fully supported/documented,
    • - Calibration & data reduction pipeline
    • GTO (260 nights over 3 - 5 yrs; 26-40 nights/semester)
    • > NIRSUR: SPHERE Giant Planet Search (200 nights)
    • - 400-600 stars observed (Age < 1 Gyr; SpT: AFGKM; < 100-150 pc)
    • - Occurrence & properties of the giant planet population at wide orbits (> 10 AU)
slide31

V- A New Era

Synergywith GAIA

slide32

V- A New Era

Synergywith GAIA

SPHERE

GAIA

ELT-PCS

Mesa et al. 11

Kasper et al. 10

Lattanzi & Sozzetti 10

http://exoplanet.eu/

slide33

V- A New Era

Synergywith GAIA

GAIA’s planetary systems

About 10 000 EGPs with GAIA for (d < 200 pc, V < 13) stars.

 Marginal overlap with SPHERE

- favorable cases (very nearby), GAIA > planet’s orbital phase

- Follow-up for Photometric/Spectroscopiccharacterization

> but, will have to wait for ELT-(IFU & PCS) for systematic study

 Outer regions of GAIA’s planetary systems

- Could help to constrain GAIA astrometric solutions (long-periods)

- Outer planets detection & characterization in synergy with GAIA

> Architecture, Dynamical evolution, Stability & Formation

To conclude: GAIA will provide a rich list of targets for Imaging surveys

slide34

Thank You!

GAIA-ESF Workshop – November, 5th 2012, Torino

slide35

IV- Key results

Physicalproperties

Mass determination

& related uncertainties

 Planet photometry & spectroscopy

 Stellar properties: d & age

 Evolutionary model predictions

. not-calibrated at young ages

. Role of initial conditions

“Hot-start” (Baraffe et al. 03; Burrows et al. 03)

“Cold start” – Core Accretion

(Marley et al. 07; Fortney et al. 08)

Hot start

Hot start

Cold start

slide36

IV- Key results

Physicalproperties

Mass determination

& related uncertainties

 Planet photometry & spectroscopy

 Stellar properties: d & age

 Evolutionary model predictions

. not-calibrated at young ages

. Role of initial conditions

“Hot-start” (Baraffe et al. 03; Burrows et al. 03)

“Cold start” – Core Accretion

(Marley et al. 07; Fortney et al. 08)

β Pic b

7-8 MJup

Hot start

Hot start

Cold start

slide37

IV- Key results

Orbital Properties & Architecture

Constraining the orbit (MCMC Orbital fitting)

  • N
  • E
slide38

IV- Key results

Orbital Properties & Architecture

Disk-Planet connection

Oct 2009

  • N
  • 2“
  • E
  • Imaging the innerdisk of β Pictoris
  • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg
  • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg
  • . Whereis the planet?

Lagrange et al. (12)

  • N
  • 500 mas
  • E
slide39

IV- Key results

Orbital Properties & Architecture

Disk-Planet connection

Nov 2003

Oct 2009

Oct 2009

Main disk

  • N

Warp

  • 2“
  • E
  • Imaging the innerdisk of β Pictoris
  • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg
  • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg
  • . Whereis the planet?

Lagrange et al. (12)

  • N
  • 500 mas
  • E
slide40

IV- Key results

Orbital Properties & Architecture

Disk-Planet connection

Nov 2003

Oct 2009

Oct 2009

Main disk

  • N

Warp

  • 2“
  • E
  • Imaging the innerdisk of β Pictoris
  • . the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg
  • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg
  • . Planet’s position angle: PAb = 212.0+-1.3 deg
  • > Probablynot in the main disk, but in the warp…
  • > Innerwarpeddisksculpted by the planet: (Mb < 20 Mjup )
  • N
  • 500 mas
  • E

Lagrange et al. (12)

ad