A new for exoplanet imaging
This presentation is the property of its rightful owner.
Sponsored Links
1 / 40

A New for Exoplanet Imaging PowerPoint PPT Presentation


  • 53 Views
  • Uploaded on
  • Presentation posted in: General

GAIA-ESF Workshop – November , 5th 2012, Torino. A New for Exoplanet Imaging. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France.

Download Presentation

A New for Exoplanet Imaging

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


A new for exoplanet imaging

GAIA-ESF Workshop – November, 5th 2012, Torino

A New for Exoplanet Imaging

GaëlChauvin

- IPAG/CNRS -

Institute of Planetology & Astrophysics of Grenoble/France

Collaborations: J.-L. Beuzit, A.M. Lagrange, D. Mouillet, J. Rameau & P. Delorme (IPAG/Fr); S. Desidera, D. Mesa & R. Gratton (Oss. Padova/It); A. Boccaletti, R. Galicher, D. Rouan & P. Baudoz (LESIA/Fr); D. Apai (Uv. Arizona/US); M. Meyer, S. Quanz & M. Reggianni (ETHZ)/Swi); M. Bonnefoy, W. Brandner & C. Mordasini (MPIA/Ger); C. Moutou, A. Zurlo& A. Vigan (LAM/Fr); J. Girard, C. Dumas, , J. Milli, D. Mawet & M. Kasper (ESO); S. Udry, J. Hagelberg (Geneva/Swi)…


A new for exoplanet imaging

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino


A new for exoplanet imaging

I- Introduction

PlanetHunting Techniques

 Radial Velocity

. Indirect technique: Doppler shift

(Targets: quiet stars; activity)

. Orbital & Physical properties:

> Mp.sin(i), P, e, a, ω &T0

> Spin-Orbit Alignment

> Architecture & Stability

> exo-Earths & Habitable Zone

Dumusque et al. 12; Triaud et al. 11

. Statistics: more than 800 exoplanets

> Occurrencedown to Super-Earths

> Planetary host: Fe/H & binarity

De Sousa et al. 11; Udry & Santos 07

http://exoplanet.eu/


A new for exoplanet imaging

I- Introduction

PlanetHunting Techniques

 Transit

. (In)direct technique: 1ary/2ary eclipse.

(Targets: quiet stars; activity; crowded fields)

. Orbital & Physical properties:

> R*/Rp, Mp, P, a, i, T0

> Planetary Interiors

> Multiple: Architecture & Stability

> Circumbinary planets

Leger et al. 09; Doyle et al. 11; Balatha et al. 12

. Transmission/emission spectroscopy

> Composition (H20, CO, NaI, KI... Haze)

> Vertical T-P structure, atmospheric

circulation & evaporation

Swain et al. 08; Knutson et al. 09; Desert et al. 12

http://exoplanet.eu/


A new for exoplanet imaging

I- Introduction

PlanetHunting Techniques

  • μ-lensing

  • . Indirect technique: Unique Rel. Event

  • (Targets: Crowded fields; probability)

  • . Orbital & Physical properties:

  • > Mp, M*, d‏, P, a (1-5 AU)

  • > Super-Earths

  • . Free-floating, wide orbit planets?

  • Gould et al. 06; Cassan et al. 12

 Astrometry

. Indirect technique: Reflex motion

(Targets: Nearby stars)

. Orbital & Physical properties:

> Mp, P, i, e, a, ω, T0(1-5 AU)

Bean et al. 07, 08; Benedict et al. 02, 10

Muterspaugh et al. 10; Sozzetti et al. 10

http://exoplanet.eu/


A new for exoplanet imaging

I- Introduction

PlanetHunting Techniques

  • Direct Imaging

  • . Direct technique: Planet’s photons

  • (Targets: young & nearby stars)

  • . Orbital & Physical properties:

  • > L, a, e, i, ω, T0

  • > Giant planets at wide orbits (>10 AU)

  • > Multiple: Architecture & Stability

  • > Planet – disk connection

  • Chauvin et al. 05, 10; Lafrenière et al. 07

  • Soummer et al. 11; Vigan et al. 12

  • . High-contrast spectroscopy

  • > Non-strongly irradiated EGPs

  • > Low-gravity, composition, non-LTE

  • chemistry, cloud coverage...

  • Janson et al. 10; Bonnefoy et al. 09, 12

http://exoplanet.eu/


A new for exoplanet imaging

Outline

A New Era for Exoplanet Imaging

I- Introduction: Why Imaging?

II- Techniques & Strategy

III- Results: What can we learn?

IV – A New Era: VLT/SPHERE

GAIA-ESF Workshop – November, 5th 2012, Torino


A new for exoplanet imaging

II- Strategy

Imaging: an observing challenge!

Detect/characterize something faint,

angularly close to something bright.

  •  High image quality

  • - High angular resolution, PSF Stability

  • - Calibration of static aberrations

  •  Stellar Halo Brightness ‏

  • - Halo attenuation/PSF subtraction

  • - Speckle noise

  •  Intrinsic companion faintness

  • - Long overall observations;

  • HIP95270 (Tuc-Hor)

  • VLT/NaCo H, 10” by 10”

  • (?)

  • (?)


A new for exoplanet imaging

II- Strategy

Dedicated Instrumentation

High Angular Resolution

 Spacetelescope

 10m-telescopes + AO system

HST

Gemini S/N

VLT/NACO

LBT/Arizona

Subaru/HiCIAO

Keck


A new for exoplanet imaging

II- Strategy

Impressive evolution

High Angular Resolution

 Adaptive optics (recover diffraction-limit resolution)


A new for exoplanet imaging

II- Strategy

The art of PSF subtraction

  • High Contrast at inner angles

  •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles

    •  Coronagraphy

    • - Occulting and Lyot-pupil mask

    • - 4QP Mask, Boccaletti et al. 08

    • - new: PIAAC, ALC, APC& Vortex

    •  Differential Imaging

    • - Polarimetric (PDI)

    • - Spectral (SDI), Close et al. 05

    • - Angular (ADI), Marois et al. 06

  •  Post-processing tools

  • - LOCI, Lafrenière et al. 07

  • - ANDROMEDA,Mugnier et al. 10

  • - KLIP/PCA, Soummer et al. 12

  • Field Rotation

    VLT/NaCo

    1“ (i.e [email protected])


    A new for exoplanet imaging

    II- Strategy

    The art of PSF subtraction

    • High Contrast at inner angles

    •  Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles

      •  Coronagraphy

      • - Occulting and Lyot-pupil mask

      • - 4QP Mask, Boccaletti et al. 08

      • - new: PIAAC, ALC, APC& Vortex

      •  Differential Imaging

      • - Polarimetric (PDI)

      • - Spectral (SDI), Close et al. 05

      • - Angular (ADI), Marois et al. 06

  •  Post-processing tools

  • - LOCI, Lafrenière et al. 07

  • - ANDROMEDA,Mugnier et al. 10

  • - KLIP/PCA, Soummer et al. 12

  • Field Rotation

    VLT/NaCo

    1“ (i.e [email protected])


    A new for exoplanet imaging

    II- Strategy

    Detection Performances

    High Contrast at inner angles

    Coronagraphy or SAT-Imaging

    combined with ADI, SDI (or PDI)

     Improved performances

    inside the IWAs: 0.1-2.0”

    Detection Limits:

    H-band

    Obs. Time ~10min

    Star, H = 5-6

    (d = 30 pc)‏

    Detection Limits:

    H-band; Tobs = 60-90 min

    Star, H = 5-6

    Down to ΔH = 14.0 @1.0”


    A new for exoplanet imaging

    II- Strategy

    Detection Performances

    High Contrast at inner angles

    Coronagraphy or SAT-Imaging

    combined with ADI, SDI (or PDI)

     Improved performances

    inside the IWAs: 0.1-2.0”

    Detection Limits:

    H-band

    Obs. Time ~10min

    Star, H = 5-6

    (d = 30 pc)‏

    Detection Limits:

    H-band; Tobs = 60-90 min

    Star, H = 5-6

    Down to ΔH = 14.0 @1.0”

    d = 30 pc, 10 Myr

    COND03 Evol. Models

    Baraffe et al. 03


    A new for exoplanet imaging

    II- Strategy

    OptimizedSamples

    Young, nearby stars

    Age < 200 Myr

    . Young, nearby associations

    Distance < 100 pc

    . access small sma,

    . enhanced sensitivity

     Spectral Types: AFGKM

    . AF: More massive EGPs?

    . M: favorable contrast

     V-band < 10.0 – 12.0

    . AO-Full Performance limitation

    > All observed by GAIA

    NaCo Large Program’s sample,

    preparatory mission to SPHERE (Chauvin et al. 10)


    A new for exoplanet imaging

    Outline

    A New Era for Exoplanet Imaging

    I- Introduction: Why Imaging?

    II- Techniques & Strategy

    III- Results: What can we learn?

    IV – A New Era: VLT/SPHERE

    GAIA-ESF Workshop – November, 5th 2012, Torino


    A new for exoplanet imaging

    IV- Key results

    Family’s portrait

    2M1207

    DH Tau

    AB Pic

    SCR1845

    CHXR 73

    GJ 758

    CT Cha

    1RXJS609

    GQ Lup

    WideorbitPMCs:

    - low mass KM stars

    - q = 0.02 – 0.2 or Δ > 200 AU

    Fomalhaut

    Hr8799

    Beta Pic

     CloserPMCs:

    - A4V-A5V massive primaries

    - q < 0.005 ; Δ = 8 - 120 AU

    - CS Disk signatures

    Ref: Chauvin et al. 04; Itoh et al. 05; Chauvin et al. 05; Biller et al. 05; Luhman et al. 06; Thalmann et al. 09; Lafrenière et al. 08; Neuhauser et al. 05; Schmidt et al. 09; Lagrange et al. 10; Kalas et al. 08; Marois et al. 08,10...


    A new for exoplanet imaging

    IV- Key results

    OuterGiantPlanet Population

    Architecture & Stability

    Astrometry & Disk/Planet

    Orbits, dynamical interactions, resonances & long-term evolution

    Physics of Giant Planets

    Photometry & Spectroscopy

    Atmosphere

    & physical properties

    Occurrence & Formation

    Statistical properties (occurrence, planetary host dependency, disk properties)

    Formation Theories: CA, GI or CF


    A new for exoplanet imaging

    IV- Key results

    Physics of GiantPlanets

    Companion nature?

     PlanetSingle-band photometry

     Stellar properties: d & age

     Evolutionarymodels (Luminosity - Mass)

    . β Pictoris b, ΔJ = 10.6+-0.3 mag,

    . 12 Myr @ 19.3 pc,

    . Mass = 7 – 8 Mjup (“Hot-Start”models)

    > However, uncertainties in the model predictions

    > Dependence: formation mechanisms , gas

    accretion shock & initial conditions

    Field Rotation

    VLT/NaCo ADI imaging

    Marley et al. 07; Mordasini et al. 12

    Bonnefoy et al. 12


    A new for exoplanet imaging

    IV- Key results

    Physicalproperties

    Atmosphere

     Planet’s SED

     Stellar properties: d & age

     Synthetic-Grid of spectra

     Atmosphericproperties

    . Radiative transfert code

    . Dusty Cloud Formation/Sedim.

    . Mol. opacity / Non-eqChem.

    βPic b,

    Teff = 1650 +- 150K, log(g) = 4.0±0.5,

    FeH = 0.0±0.5, R = 1.3+-0.2 RJup

    > dusty clouds (Lβ-type)

    Bonnefoy et al. 12


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Imaging Exoplanet’s revolution

     Discovery: Nov 2003

    ΔL’ = 7.7 mag, sep = 300 +- 15 mas

     Monitoring campaign: 2008 - now

     Recovery: Oct. 2009

    Nov 2003

    Oct 2009

    Lagrange et al. 09, 10

    Bonnefoy et al. 10, Quanz et al. 10

    • N

    VLT/NaCo ADI imaging

    L’-band, β Pic b

    • 500 mas

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Imaging Exoplanet’s revolution

    •  Discovery: Nov 2003

    • . ΔL’ = 7.7 mag, sep = 300 +- 15 mas

    •  Monitoring campaign: 2008 - now

    • Recovery: Oct. 2009

    • Astrometricfollow-up

    • . VLT/NaCo monitoring 2003 - 2012

    Chauvin et al. 12

    • N

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Constraining the orbit

     MCMC Orbital fitting

    β Pic b,

    P = 17 - 21 yrs

    a = 8 - 10 AU

    e < 0.17

    i = 88.5 +- 1.5 deg

    Ω = 212.5 +- 1.5 deg

    Chauvin et al. 12

    • N

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Constraining the orbit

     Planet – Disk connection

    . main disk, up to 20’’ (1000 AU),

    PAMD= 209.5+-0.3deg

    . β Pic b

    PAβ Pic b= 212.0+-1.3o

    > β Pic b in the disk’s warp, Lagrange et al. 12

    Main disk

    Warp

    • 2“

    • N

    • E

    • N

    • E


    A new for exoplanet imaging

    IV- Key results

    CA Limit

    Formation & Evolution

     In-situCoreAccretiondoes not workat > 20-30 AU

    > Core or Disk fragmentation ?

    Dodson –Robinson et al. 09; Boley et al. 09

    > Innerlimitto the Core or Disk fragmentation?

     Dynamicalevolution & stability

    > outward migration (corotation torque), planetscattering & resonances

    Crida et al. 09; Scharf & Menou 09


    A new for exoplanet imaging

    Outline

    A New Era for Exoplanet Imaging

    I- Introduction: Why Imaging?

    II- Techniques & Strategy

    III- Results: What can we learn?

    IV – A New Era: VLT/SPHERE

    GAIA-ESF Workshop – November, 5th 2012, Torino


    A new for exoplanet imaging

    V- A New Era

    Upcoming instruments (mid-2013),

     GPI, Gemini Planet Finder(MacIntosh et al. 08)

    - Fast-high order adaptive optics system

    - Interferometricwave front sensing for static aberrations

    - NIR-IFU + Apodizedpupil Lyot coronagraph

     VLT/SPHERE (Beuzit et al. 08)

    - SAXO, Extreme AO system (ITTM-DM and DTTS, PTTS)

    - NIR (YJHK): IRDIS (Dual imaging Spectrograph) and IFU 3D-spectroscopy

    - VIS: ZIMPOL (Imaging Polarimeter)

    - Coronagraphs: Classical Lyot, A4P and ALC

    - GTO of 260 nights; 200 devoted to survey 300 nearby stars


    A new for exoplanet imaging

    V- A New Era

    SPHERE concept


    A new for exoplanet imaging

    V- A New Era

    SPHERE Instruments

    Coronography: no /4Q / Lyot

    Rotation at Nasmyth:

    • Pupil-stab. (instrument fixed wrt tel.)

    • Field-stab (slit spectro, long DIT…)

    • No rotation: minimize crosstalk…)

    AO sensitivity for high contrast:

    R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS

    Separation with improved contrast:

    2 - 20 λ/D, ie 30-300 mas in R, or 80 – 800 mas in H

    Mode switching: not VIS and NIR in same night


    A new for exoplanet imaging

    V- A New Era

    Observingwith SPHERE

    • SPHERE Timeline,

      • Fall 12, Tests @IPAG

      • March 13PAE

      • April 13Shipping

      • May 13 Integration @Paranal

      • July& Dec 13First Light & Commissioning phase1, 2 & 3

      • March 14CfP 94, offered to the ESO community

      • - All offered mode fully supported/documented,

      • - Calibration & data reduction pipeline

      • GTO (260 nights over 3 - 5 yrs; 26-40 nights/semester)

      • > NIRSUR: SPHERE Giant Planet Search (200 nights)

      • - 400-600 stars observed (Age < 1 Gyr; SpT: AFGKM; < 100-150 pc)

      • - Occurrence & properties of the giant planet population at wide orbits (> 10 AU)


    A new for exoplanet imaging

    V- A New Era

    Synergywith GAIA


    A new for exoplanet imaging

    V- A New Era

    Synergywith GAIA

    SPHERE

    GAIA

    ELT-PCS

    Mesa et al. 11

    Kasper et al. 10

    Lattanzi & Sozzetti 10

    http://exoplanet.eu/


    A new for exoplanet imaging

    V- A New Era

    Synergywith GAIA

    GAIA’s planetary systems

    About 10 000 EGPs with GAIA for (d < 200 pc, V < 13) stars.

     Marginal overlap with SPHERE

    - favorable cases (very nearby), GAIA > planet’s orbital phase

    - Follow-up for Photometric/Spectroscopiccharacterization

    > but, will have to wait for ELT-(IFU & PCS) for systematic study

     Outer regions of GAIA’s planetary systems

    - Could help to constrain GAIA astrometric solutions (long-periods)

    - Outer planets detection & characterization in synergy with GAIA

    > Architecture, Dynamical evolution, Stability & Formation

    To conclude: GAIA will provide a rich list of targets for Imaging surveys


    A new for exoplanet imaging

    Thank You!

    GAIA-ESF Workshop – November, 5th 2012, Torino


    A new for exoplanet imaging

    IV- Key results

    Physicalproperties

    Mass determination

    & related uncertainties

     Planet photometry & spectroscopy

     Stellar properties: d & age

     Evolutionary model predictions

    . not-calibrated at young ages

    . Role of initial conditions

    “Hot-start” (Baraffe et al. 03; Burrows et al. 03)

    “Cold start” – Core Accretion

    (Marley et al. 07; Fortney et al. 08)

    Hot start

    Hot start

    Cold start


    A new for exoplanet imaging

    IV- Key results

    Physicalproperties

    Mass determination

    & related uncertainties

     Planet photometry & spectroscopy

     Stellar properties: d & age

     Evolutionary model predictions

    . not-calibrated at young ages

    . Role of initial conditions

    “Hot-start” (Baraffe et al. 03; Burrows et al. 03)

    “Cold start” – Core Accretion

    (Marley et al. 07; Fortney et al. 08)

    β Pic b

    7-8 MJup

    Hot start

    Hot start

    Cold start


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Constraining the orbit (MCMC Orbital fitting)

    • N

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Disk-Planet connection

    Oct 2009

    • N

    • 2“

    • E

    • Imaging the innerdisk of β Pictoris

    • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg

    • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg

    • . Whereis the planet?

    Lagrange et al. (12)

    • N

    • 500 mas

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Disk-Planet connection

    Nov 2003

    Oct 2009

    Oct 2009

    Main disk

    • N

    Warp

    • 2“

    • E

    • Imaging the innerdisk of β Pictoris

    • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg

    • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg

    • . Whereis the planet?

    Lagrange et al. (12)

    • N

    • 500 mas

    • E


    A new for exoplanet imaging

    IV- Key results

    Orbital Properties & Architecture

    Disk-Planet connection

    Nov 2003

    Oct 2009

    Oct 2009

    Main disk

    • N

    Warp

    • 2“

    • E

    • Imaging the innerdisk of β Pictoris

    • . the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg

    • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg

    • . Planet’s position angle: PAb = 212.0+-1.3 deg

    • > Probablynot in the main disk, but in the warp…

    • > Innerwarpeddisksculpted by the planet: (Mb < 20 Mjup )

    • N

    • 500 mas

    • E

    Lagrange et al. (12)


  • Login