Six Sigma
This presentation is the property of its rightful owner.
Sponsored Links
1 / 74

Six Sigma 를 하려면 PowerPoint PPT Presentation


  • 197 Views
  • Uploaded on
  • Presentation posted in: General

Six Sigma 를 하려면. 꼭 알아야만 하는 통계. 6. 목 차. 1. 기본 통계량 : 평균과 편차 2. 정규분포 3. 통계적 의사결정 - 가설검정 4. 분포를 이용한 추정 , 검정 - 평균치 : z 분포 /t 분포 - 산 포 : χ ² 분포 /F 분포 5. 회귀분석 6. 실험계획법 기타 - 공정능력 지수 / 장기 , 단기 Sigma. Six Sigma 와 통계 Tool. Improve. Control. Measure. Analyze. Define.

Download Presentation

Six Sigma 를 하려면

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Six sigma

Six Sigma를 하려면

꼭 알아야만 하는 통계

6


Six sigma

목 차

1. 기본 통계량 : 평균과 편차

2. 정규분포

3. 통계적 의사결정

- 가설검정

4. 분포를 이용한 추정,검정

- 평균치 : z 분포/t 분포

- 산 포 : χ²분포/F 분포

5. 회귀분석

6. 실험계획법

기타-공정능력 지수 / 장기,단기 Sigma


Six sigma

Six Sigma와 통계Tool

Improve

Control

Measure

Analyze

Define

*통 계 Tools and Techniques

  • 벤치마킹

  • 체크시트

  • 관리도

  • 데이터 차트

  • Guage R&R

  • 히스토그램

  • 척도

  • Run Chart

  • 샘플링

  • 시그마 계산

  • 층별

  • 산포

  • 인과분석

  • 상관

  • 실험계획법

  • Fault Tree

  • FMEA

  • 가설검증

  • 파레토

  • 프로세스 시뮬레이션

  • 정량적 프로세스 분석

  • 회귀

  • 계층화

  • Structure Tree

  • 가치분석

  • Challenge Assumptions

  • CDAM

  • 비용 효과분석

  • 기준선정 메트릭스

  • Force Field Analysis

  • How-By Pursuits

  • 수평적 사고

  • Mind Mapping

  • Random Word

  • Six Hat Thinking

  • Storyboards

  • Solution Mapping

  • FMEA

  • 프로세스 관리시스템

  • Workplanning

  • 친화도

  • 브레인스토밍

  • 고객조사

  • 전개도

  • 간트차트

  • 그래프

  • 카노분석

  • 회합스킬

  • Mult-voting

  • 명목집단방법

  • 팀 헌장

  • 정성적 프로세스 분석

  • Top Down Mapping

  • 고객의 소리 변환

  • 품질기능전개


Six sigma

통계적 사고의 정의

1. 모든 일은 상호 연결된 프로세스의 연속이며,

2. 모든 프로세스는 변화하며,

3. 산포를 이해하고 줄이는 것이 성공의 열쇠이다.


Six sigma

확률과 통계

  • 확률은 게임의 규칙을 알고 게임을 관전하는 것과 같음.

  • 통계는 게임의 규칙을 알기 위해 게임을 관전하는 것과 같음.

  • Six Sigma 경영에서는 프로세스를 관찰하고 (측정을 통해 게임을 관전함) 사실에 근거한 의사결정을 하며,프로세스를 관리하기위해 규칙을 적용함.


Six sigma

1.기본 통계량

통계는 표본을 통해 모집단의 특성을 파악하는 것

모집단과 표본

모집단(Population)

표본(Sample)

정의 : 통계적 판단을 위해

모집단에서 선택된

작은 집단

정의 : 파악하고자 하는 대상

ex : 전 국민의 평균 수명

전 국민의 출신 지역

Sampling

×

표 본

×

×

×

×

×

×

×

×

×

× : 8개

× 2개에 ▲, ○가 각 1개씩 존재

▲ : 4개

○ : 4개

통계량

평균 : μ

산포 : σ

평균 : χ

산포 : s


Six sigma

통계를 통해 모집단의 특성을 알고 앞으로 일어날 사건도 예측

왜 통계가 필요?

■ 표본을 통해 모집단의 대표 값이나 변동의 크기를 구하는 것

기술 통계(Descriptive Statistics)

ex) GNP의 추정, 평균수명

■ 표본을 통해 얻은 정보를 이용하여 불확실한 사실에 대해 추론하고

통계적 판단을 위한 Model을 설정하는 것,

미지의 특성에 대해 주어진 정보를 이용하여 결론을 내리고 미래에

일어날 특성치에 대한 예측을 하는 것

추측 통계(Inferential Statistics)

ex) 회귀분석 Model


Input output

Input,프로세스 및 Output 척도

Input

척도

프로세스

척도

Output

척도

  • 효과성 척도

  • 결점율

  • 결점수

  • 총 반응 시간

  • 대금 청구 정확도

  • 이익

  • 효율성 척도

  • 비용

  • activity 당 시간

  • 재작업 양

  • 대응 시간

  • activity의 변동성


Six sigma

그래프/도표의 필요성

자료가 갖는 의미를 쉽게 이해하고 의미를 찾아냄

돗 수 분 포

(Frequency Distribution)

Delivery Time*

  • 치우침, 대칭 등 Data이

  • 구조를 이해

95, 120, 117, 99, 110, 107

125, 98, 85, 127, 105, 114

103, 112, 92, 101, 122, 120

도표화

×

×

×

×

×

×

×

×

×

×

×

×

Data 자체는 의미 없는 숫자 덩어리

×

×

시간

80

90

100

110

120

130

  • 의문이 명확해짐

  • 왜 치우침이 발생할까?

* 주문접수 후 고객에게 도착한 시간


Six sigma

데이터 수집 방법

지표 마련

Step 1

지표에 대한

운용정의 마련

Step 2

측정계획 수립

Step 3

데이터 수집

Step 4

데이터 표현

데이터 평가


Six sigma

데이터 표현 방법


Six sigma

산포란 무엇인가?

•산포란 제품이나 서비스가 제공될 때 프로세스가 정확하게 동일한 결과를 가져오는 것은 아니라는 것을 의미함

•산포는 모든 프로세스에 존재함

•비즈니스 프로세스에서 산포를 측정하고 이해하는 것은 현재의 성과수준이 어느 정도 수준인지, 산포를 줄이는 한편 불량을 줄이기 위해 필요한 것이 무엇인지를 도출하는 데 도움을 줌

데이터 산포


Six sigma

전 제 조 건

  • 각 실험은 Yes, No 같은 2가지 결과만 갖음(P, 1-P)

  • 각 실험은 독립으로 서로 영향을 주지 않음(복원추출)

2.정규분포

이항분포는 모집단의 불량율(P)를 알고 있을 때 표본집단에서 나타난 불량율이 모집단과 얼마나 다른지를 알고 싶을 때 사용

모집단과 표본

모집단 정보

표본집단에서 나타날 수 있는 경우

4번 추출

BBBB

WBBB

BWBB

BBWB

BBBW

WWBB

BWBW

BWWB

WBBW

WBWB

BBWW

WWWB

WWBW

WBWW

BWWW

WWWW

공 4개의 가능한 조합

흰 공 확율 : 3/4

검은 공 확률 : 1/4

추출된 흰 공의 개수

(W)

○ : 흰 공(W)

● : 검은 공(B)

0

1

2

3

4

경우의 수

1

4C0

4

4C1

6

4C2

4

4C3

4

4C4

각 경우의 확율

(1/4)⁴

(1/4)³

(3/4)

(1/4)²

(3/4)²

(3/4)³

(1/4)¹

(3/4)⁴

확율

0×(1/4)⁴

= 0.004

4×(1/4)³

×(3/4)

= 0.007

6×(1/4)²

×(3/9)²

= 0.211

4×(3/4)³

×(1/4)¹

= 0.422

1×(3/4)³

= 0.316


Six sigma

0.422

0.316

P(X = 흰 공 개수)

= 4Cχ(3/4) (1/4)

0.211

χ

4-χ

0.047

나타나는

검은 공

개수(X)

0.004

0

1

2

3

4

χ

4-χ

4×2/4×2/4

= 1

4Cχ(2/4) (2/4)

0.422

χ

4-χ

4×3/4×1/4

= 0.87

4Cχ(1/4) (3/4)

0.316

0.211

0.047

0.004

X

0

1

2

3

4

주어진 n, p에 따라 확률분포를 그리고 모집단의 χ, S를 구할 수 있음

이항분포(2)

이항분포

χ

S

4×0.75

= 2.25

4×1/4×3/4

= 0.87

n = 4

p = 3/4

(흰 공 3개)

0.375

4×0.5

= 2

0.25

0.25

n = 4

p = 2/4

(흰 공 2개)

0.063

0.003

X

0

1

2

3

4

4×0.25

= 1

n = 4

p = 1/4

(흰 공 1개)

χ = np

S = np(1-8)

χ

n-χ

일반식 :

nCχP (1-P)


Six sigma

연속형 Data는 계급의 폭을 작게 하여 분포를 함수형태로 나타낼 수 있음

확률 밀도함수

계급의 폭이 10cm

계급의 폭이 3cm

계급의 폭이 아주 작음

키가 167.5cm부터 172.5cm까지의 학생은 전체의 28%

P(167.5< χ<172.5)

= 0.28

28%

0.28

0.25

0.16

0.12

0.08

0.04

0.04

0.02

0.01

155

160

165

170

175

180

185

190

195

155

170

195

155

170

195


Six sigma

f(χ) = 1 Exp - (χ-Μ)²

2σ²

정규 분포

정규 분포의 통계적 판단의 출발점

정규분포는 평균치에서 벗어난 정도에 따라 확률 값으로 주어짐

정규 분포의 특성

정규 분포란?

평균값

= 중앙값= 최고 값

  • Gauss가 발견

  • 계측 오차에 대한 분포

  • 대부분의 자료에 적합

좌우대칭

면적 68%

평균 M, 표준편차 σ

- ∞< χ< ∞

χ축에

닫지 않음

면적 95%

N(M, σ²)으로 표시

-2σ

Μ

☞ Data가 정규 분포에 따르지 않으면 고도의 Approach가 필요


Six sigma

170

π

4

π

50% - 68% = 16%

50% - 68% = 16%

2

2

정규 분포의 활용

Data가 정규 분포에 따르면 표본집단의 평균치가 정규 분포상에 어디에 위치하는지에 따라 일어날 수 있는 확률을 구할 수 있음

A사직원의 신장은

χ = 170, σ = 10 이다.

180cm 이상은 몇 %일까?

은행에서 고객은 5분 이내 업무처리를

원한다. A은행의 업무처리는

χ = 4분 σ = 1분이다.

몇% 고객이 불편을 참고 있는가?

고객의

요구수준

알고 싶은

확율

고객 불만

영역

150

-2σ

160

-1σ

180

190

1

-3σ

2

-2σ

3

-1σ

5

6

7


Six sigma

정규확률분포의 표준화

  • 평균이 0 이고 표준편차가 1인 정규분포를 표준정규분포라고 부른다.

  • z value:X라고 지정하는 어떤 값과 모집단의 평균m 와의 거리를 모집단의 표준편차 s로 나눈 값을 말한다.


Six sigma

χ = np

이항 분포와 정규 분포

이항 분포는 정규 분포로 간주하여 계산할 수 있다.

B(n, p)

n : 반복수, p : 나타날 확율

σ = np(1-p)

B(15, 0.4)

이항 분포에서

P(7≤χ≤10) = 15C7(0.4) (0.6) + ··· + 15C10(0.4) (0.6)

= 0.381

0.2

7

8

10

5

정규 분포에서

P(6.5≤χ≤10.5)

= P(6.5 - 6 ≤ Z ≤ 10.5 - 6)

= P(0.263 < Z< 2.368

= 0.387

0.1

1.9

1.9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

빗금부분의

확률은?

☞ np >15인 경우에는 거의 정규 분포에 가까움


Six sigma

누적

확율

Minitab

사용

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Z 값

-2

-1

0

1

2

모집단에 대한 가정

모집단이 정규 분포에 따른다는 가정은 통계처리의 출발점

모집단에 대한 의심

해 답

1. 모집단이 정규분포에 따르는지

어떻게 아나?

2. 모집단이 정규분포가 아니면

무엇이 잘못되나?

3. 모집단이 정규 분포가 아니면

어떻게 해야 하나?

  • Normality Test(정규성 검증)

  • 예를 들어 구간 추정을 할 때 신뢰도 95%면 t0.025 s 로

  • 하는데 모집단이 정규분포가

  • 아니면 구간이 90%인지 80%

  • 인지 알 수 없게 됨

  • 정규성을 해치는 이상 Data를 제거

  • 자료를 변환하여 정규화

n

Y = logχ

×


Six sigma

모든 Data는 정규분포에 따르는지를 확인후 통계적의사결정에 사용

  • 각 데이터에 대한 정규성 검정을 실시함.

    • Graph > Probability Plot

    • Variables: Data25

    • OK.

    • 샘플이 많은 경우 (100개 이상) Anderson-Darling 검정실행

    • Stat > Basic Statistics > Normality Test

    • Variables: Data1000

    • OK. (p value가 =.05 보다 크다면 정규 분포를 따름)


P 0 05

정규성 검정:p값>0.05 이상이면 정규분포

Data를 직선화된 정규분포 선상에 Plot하여 정규성을 검정


Six sigma

정규분포에 따르지 않는 Data는 정규성을 같도록 변환

  • 목적:

    • 정규성 검정 연습

  • Minitab 연습

    • File: Case6Sigma.mpj

    • c2 Cycle Time 에 대한 히스토그램 작성

    • Y 변수(c2 Cycle Time)가 정규 분포를 하는지 검정


Six sigma

사례연구 : 은행의 예금처리 시간

  • 정규성과 변환

    • cycle time은 대략적으로 정규 분포를 하는가?

      • Graph > Probability Plot

Cycle time 은 정규분포를

따르지 않음.


Six sigma

정규성을 갖는 Data로 변환

  • 목적:

    • 알맞은 변환 방법을 선택함.

  • 테이블 연습

    • File: Case6Sigma.mpj

    • Box-Cox 변환을 이용하여 알맞은 변환 방법을 결정함

    • Stat > Control Charts > Box-Cox Transformation

      • Single column: Cycle Time Subgroup size: = 1


Six sigma

정규성 검정과 변환

  • cycle time 은 대략적으로 정규분포를 하는가?

    • Graph > Probability Plot

    • Cycle time 은 정규분포를 하지 않음

  • 어떤 변환을 이용해야 하는가?

    • Stat > Control Charts > Box Cox

  • = 0 이므로 log 변환이 적합함


    Box cox stat control charts box cox

    Box-Cox 변환Stat>Control Charts>Box-Cox


    Minitab calculator

    Calc > Calculator

    “store result in variable” Log10 Cycle Time

    “Expression”내부를 클릭하고, functions 메뉴에서 Log 10을 선택함.

    C2 Cycle Time 을 식에 대입하기 위해 두번 클릭하여 “number’가 보이도록 함.

    그러면, 변환된 데이터가 Log 10 Cycle Time 컬럼에 나타남.

    MINITAB Calculator를 이용하여 데이터를 변환하기


    Six sigma

    3.통계적 의사결정

    • 가설검정은 “Group 1은 Group 2 와 비교할 때 유의하게 다른가”에 대한 답을 줌. Groups 1과 2 는 개선 전, 후 프로세스의 싸이클 타임 일수도 있고, 장소1과 장소2 에서 발생하는 결점 일수도 있음.

    • 가설검정은 연속형 데이터와 이산형 데이터에 적용 할 수 있고, 두개 이상의 그룹에도 적용됨.

      검정 방법:

      • t-검정(t-Tests)

      • 분산분석(ANOVA tests)

      • 상관관계(Correlation)

      • 회귀(Regression)

      • 카이-제곱 검정(Chi-squared tests)


    Six sigma

    가설검정의 가정

    • 모집단으로 부터 충분히 많은 시료가 랜덤하게 추출되었음.

    • 통계적으로 서로 독립이다는 가정

    • 데이터는 정규분포를 함.


    Six sigma

    올바른

    선택

    Ha가 사실이나

    Ho를 선택

    Type Ⅱ error

    β

    Ho가 사실이나

    Ha를 선택

    Type Ⅰ error

    α

    올바른

    선택

    검정은 표본집단이 모집단과 같은지 다른지를 판정하는 것

    검정의 판단 논리

    Ho(귀무가설) : 표본에서 얻은 정보를

    볼 때 표본은 모집단과

    일치한다는 주장

    Ha(대립가설) : 표본에서 얻은 정보를

    볼 때 모집단과 같다고

    할 수 없다는 주장

    Ho

    선 택

    Ha

    Ho

    Ha

    사 실


    Six sigma

    x =

    x =

    m

    cs

    통계적 의사결정 사례

    six sigma 팀은 두 부서간 평균 급여에 대해 차이가 있는지를 비교하려 함.

    팀은 먼저 두 부서의 모집단으로 부터 무작위로 샘플을 채취한 다음 부서별로 히스토그램을 그린 결과 아래와 같음.


    Six sigma

    가설검정의 해석

    우리가 하려는 가설검정은 “귀무가설이 잘못 되었음을 증명하라” 임.

    이것을 위해 앞에서 언급한 p-value의 개념을 상기 시켜 주고자 함.

    P 에 대한 정의는 아래와 같음.

    만일p< 0.05 이면, 차이가 있다는 것을 의미함.

    “p-value는 xcs와xm사이에서 관측된 차이는 샘플링 산포에 의해서만 발생할 확률이다”

    p-value에 대한 또 다른 정의는:

    “p-value는 두 샘플이 같은 모집단에서 추출될 확률이다.”

    결론적으로 우리가 범할 오류가 5% 보다 작지 않다면 우리는 통계적으로 유의 하다고 주장할 수 없게 됨..


    Six sigma

    가설검정

    Y

    이산형

    연속형

    t-Test

    ANOVA

    Chi Square

    이산형

    X

    Logistic

    Regression

    Regression

    연속형


    Six sigma

    Ha 채택

    Ha 기각

    Ha 채택

    Ha 기각

    Ha 채택

    1-α

    1-α

    α

    α

    α

    2

    2

    χ

    χ

    T

    α

    σ

    α

    σ

    α

    σ

    α

    χ - <μ <χ+

    χ > T +

    이면(1- ) 100%의

    t

    t

    t

    2

    2

    2

    2

    n

    n

    n

    신뢰도를 갖고 Ha를 채택

    양쪽 검정

    한쪽 검정

    (1-α) 100% 신뢰


    Six sigma

    활용 분포

    중요한 통계적 의사결정 사항

    모집단이 정규분포에 따르면서 모집단의평균,산포를 알고 표본집단과 모집단간의 평균의차가

    있는 지를 알고 싶을 경우

    Z 분포

    모집단이 정규분포에 따르되 모집단의평균을

    모르면서 표본집단과 모집단간의 평균의차가

    있는 지를 알고 싶을 경우

    t 분 포

    표본의 분산이 정규분포에 따르는모분산과의

    차이가 있는 지를 알고 싶을 경우

    카이자승(χ²)

    분포

    정규분포에 따르는 두집단간의

    산포의차가 있는 지를 알고 싶을 경우

    F 분포


    Six sigma

    α

    σ

    Z

    ·

    ²

    2

    n =

    d

    ²

    1.64

    ·

    4

    =

    0.8

    α

    σ

    Z

    = d

    n

    2

    = 68

    α

    σ

    Z

    ·

    ²

    2

    n =

    d

    통계적 판단을 위한 샘플의 크기

    통계적 판단을 위한 샘플의 크기는 허용오차(d)와 신뢰수준에 따라 결정됨

    Case Study

    모집단이 N(μ, σ²)에 따를 때

    μ추정 값의 100(1-α)%의

    오차 한계는

    철판 수축의 표준 편차는 4㎜로 알려져 있다

    90% 신뢰수준을 갖고 추정오차가 0.8㎜ 이내로 되려면 몇 개를 Test하여야 하나?

    σ

    Z

    α

    로 표시된다

    n

    2

    Z0.05 = 1.64

    100(1-α)%의 확신을 갖고

    오차가 d 이내가 되려면

    이를 만족시키는 n값은


    Six sigma

    4.분포를 이용한 가설검정 및 추정

    Z 분포의 이용

    중심극한의 정리

    모집단 평균의 추정

    (정규분포의 성질)

    모집단

    평균 값

    Data 수가 n개인 표본집단의 평균치가 X, 편차가 σ

    라면 모집단의 평균치가 존재할 수 있는 범위는 99.7% 확율에서

    n개 추출

    평 균 : Μ

    편 차 : σ

    N(Μ, σ²)

    X₁

    X₂

    X₃

    Xn

    n개 추출

    평균 : Μ

    편차 : σ/ n

    N(Μ, σ/ n)

    n개 추출

    면적 99.7%

    n개 추출

    -3σ

    Μ

    +3σ

    • N(Μ, σ²)인 모집단에서 n개 취한 표본 집단들의 평균값은 Μ이고 평균값의 편차는 σ/ n이다

    • 샘플개수 n이 증가할 수록 표본집단의 평균 X는 Μ에 수렴

    σ

    σ

    X

    n

    n


    Six sigma

    3.6

    2.9

    2.8

    2.6

    2.4

    3.2

    2.2

    2.6

    2.6

    2.5

    2.4

    2.6

    2.3

    2.5

    2.1

    2.6

    3.0

    2.5

    2.7

    2.5

    2.6

    3.1

    3.8

    2.0

    2.2

    2.2

    2.8

    2.7

    1.8

    2.5

    3.0

    3.2

    2.5

    2.6

    3.2

    3.1

    4.1

    2.7

    2.7

    2.2

    모집단

    표 본

    X의 신뢰구간은

    ±2σ이나 σ가

    미지의 양으로

    표본집단의 편차

    S값을 추정량으로 사용

    N(Μ, σ²)

    Μ가 존재하는

    범위(95%)

    40개

    χ = 2.217

    S = 0.475

    n = 40

    χ = Σχi = 2.715

    S = Σ(χi-χ)² = 0.475

    Μ = 2.217이고 어떻게 표본을 골라도

    95% 평균치가 검출되는 구간은

    2.217 - 2× 0.475< Μ< 2.217 + 2× 0.475

    2.067 < Μ< 2.367

    40

    40

    40

    39

    표본집단의 평균치, 편차에서 모집단의 평균치를 측정할 수 있음

    사출 부품의 중량

    모집단의 평균은?


    Six sigma

    X

    S

    X - Μ

    Z =

    σ/ n

    t 분 포의 이용

    모집단의 편차를 아는 경우

    모집단의 편차를 모르는 경우

    (정규분포의 성질)

    표본의

    평균 값

    모집단

    모집단

    n개

    n개

    N(Μ, σ²)

    X₁

    X₂

    Xn

    N(Μ, σ²)

    σ : DRI

    n개

    N(Μ, σ²/ n)

    S는 알 수 있음

    n개 추출

    t

    표본 X의 표준 정규 분포에서

    σ를 표본으로 추정치 S로 대체하면

    X - Μ

    t는 자유 n-1의 t 분포에 따른다

    n이 크면 정규 분포로 수렴

    표본 X의 표준 정규 분포는

    t =

    S/ n


    Six sigma

    α

    α

    α

    α

    2

    2

    2

    2

    α

    Z

    2

    α

    α

    α

    S

    α

    S

    χ - <χ<χ+

    Z

    Z

    t

    t

    2

    2

    2

    2

    n

    n

    α

    Z

    2

    α

    t분포표에서 자유도가 14일 때

    = t0.05 = 1.7

    t

    2

    Z 분포/ t 분포의 차이

    모집단의 정보에 따라 적용하는 분포가 틀려짐

    Z 분포

    t 분포

    (모평균, 편차가 기지)

    (모평균을 모를 때)

    자유도 n-1인

    t분포

    신뢰구간

    1-α

    rd

    α

    α

    α

    0

    0

    Z

    t

    t

    2

    2

    2

    σ

    σ

    χ - <χ<χ+

    n

    n

    사 례

    ABS의 강도의 편차는 8로 알려져

    있는데 모집단의 평균은 잘 모른다

    100개를 Sampling하여 Test해보니

    평균치가 42.7이었다

    모평균의 90% 신뢰구간은?

    새로운 ABS를 개발하여 충격강도를

    15회 측정하여 보니 평균이 39.3,

    표준편차가 2.6이었다

    새로운 ABS의 충격강도 Μ에 대해

    90%신뢰구간은?

    = Z0.05 = 1.64

    n = 15 : 자유도 14

    Μ의 구간은 42.7± 1.64× 8/ 100

    Μ의 구간은 39.3± 1.761× 2.6/ 15

    = 42.7 ± 1.31

    = 39.3 + 1.18


    Six sigma

    2.5%

    15

    Z0.025 = -1.96

    검정 통계량 : Zα< χ - Μ

    σ/ n

    -1.96 < χ - 15

    3/ 70

    평균치의 검정(1)

    모집단의 편차(σ)를 알고 있으면 Z값을 이용하여 검정

    평균치 검정(Z 검정)

    Case

    AL사 C/S팀은 A/S 접수 후 처리가

    평균 15시간, 편차 3시간 내에

    처리하고 있다

    C/S팀에서는 새로운 업무 절차를

    만들어 처리 70건의 A/S 요청에

    적용해 본 결과 시간을 단축하였다고

    한다(편차는 같음)

    이런 주장을 97.5% 신뢰 수준에서

    받아들이려면 처리 시간은 얼마가

    되어야 하나?

    Ho = Μ ≥ 15

    Ha = Μ< 15

    χ< 14.3

    결론 : Test 평균이 14.3 시간 보다는

    작아야 95%수준에서

    단축되었다고 말할 수 있다


    Six sigma

    t = 194.8 - 200 = -1.25

    13.14/ 10

    t0.01

    = -2.82

    표본의

    t값 = -1.25

    평균치의 검정(2)

    모집단의 편차를 모를 때는 t값을 이용하여 검정

    평균치 검정(t 검정)

    Case

    검정 통계량 : t = χ - Μ

    S / n

    자동차 부품의 평탄도는 200㎛ 까지

    허용된다

    10개를 임의로 택해 Test하여

    175, 190, 215, 198, 184

    207, 210, 193, 196, 180

    10개의 Data를 얻었다

    이 부품 모집단의 평균치를 Μ,

    편차를 σ로 할 때 가설은

    Ho : Μ >200

    Ha : Μ< 200이며

    유의 수준 0.01에서 검정하면

    표본집단 통계량 : χ = 194

    S = 13.14

    자유도 9, α = 0.01일 때 t값은 표에서 -2.82< -1.25

    결론 : 주어진 표본의 Data로는

    200 이하로 개선되었다

    할 수 없다


    Six sigma

    기각역

    기각역

    Ho

    Ha

    Ho

    Ha

    한쪽 검정

    Μ≤Μo

    Μ >Μo

    Z ≥ Za

    Μ≤Μo

    Μ >Μo

    t ≥ ta

    Μ≥Μo

    Μ< Μo

    Z ≤ Za

    Μ≥Μo

    Μ< Μo

    t ≤ ta

    α

    α

    양쪽 검정

    Μ = Μo

    Μ ≠ Μo

    Μ = Μo

    Μ ≠ Μo

    │Z│≥ Z

    │t│≥ t

    2

    2

    χ - Μ

    χ - Μo

    Z =

    t =

    S / n

    S / n

    평균치 검정(3)

    모편차(σ)를 알 때

    모편차(σ)를 모를 때

    통계량


    Six sigma

    모집단

    확률 표본

    n개

    N(Μ, σ²)

    X₁

    X₂

    X₃

    Xn

    산포의 크기

    σ²

    Σ(χi - χ)²

    χ² = Σ(χi-χ)² = (n-1)S²

    P[χ²0.975< (n-1)S²< χ²0.025] = 0.95

    σ²

    σ²

    σ²

    카이자승(χ²) 분포

    정 의

    특성/활용방법

    확율

    자유도 n-1인 함수

    특성 : 긴 꼬리

    비대칭

    항상 양수

    α

    α

    χ²

    χ1²

    χα²

    활용방법 : 표본의 산포(S²)를 알고

    모집단의 산포(σ²)를

    추정할 때

    95%에서 모집단 σ²의 신뢰구간을

    구하려면

    (n-1)S²< σ²< (n-1)S² = 0.95

    P

    χ²0.025

    χ²0.975


    Six sigma

    n - 1 = 9, 1-α = 0.9

    5%

    5%

    χ²

    χ²-α = χ²0.95

    = 3.325

    χ²-α = χ²0.05

    = 16.919

    2

    2

    카이자승(χ²) 분포의 이용(1)

    Case

    전지는 전압이 균일하게 유지되어야 함

    생산시 검사에 통과한 전지 10개를

    10시간 사용 후 전압차이를 Test해보니

    평균차이가 0.7V, 편차가 0.4V 였다

    (편차가 큰 문제임)

    이러한 차이가 정규 분포에 따른다고

    가정할 때 모집단의 편차는 90% 신뢰

    수준으로 얼마라고 말할 수 있는가?

    (n-1)S²(n-1)S²

    < σ²<

    χ²0.05

    χ²0.95

    9×(0.4)²9×(0.4)²

    < σ²<

    16.919

    3.325

    0.085< σ²< 0.433

    0.29< σ²< 0.66


    Six sigma

    Ho : σ = σ²

    Ha : σ²>σ²

    (n-1)s²

    χ² =

    검정 통계량 :

    σ²

    (10-1)(0.2)²

    =

    = 5.76

    (0.25)²

    5%

    기각역

    χ²0.95

    = 3.325

    표본의

    χ²=5.76

    카이자승(χ²) 분포의 이용(2)

    카이자승 분포를 이용하여 표본의 분산이 모분산과 같은지를 검정할 수 있음

    해 답

    Case

    앞의 전지 예에서 전해질의 처방을 변경하여 전압차의 편차를 0.2로 줄였다고 한다

    (n = 10)

    95% 신뢰수준에서 산포가

    개선되었다고 할 수 있는가

    전지 전압차의 편차는 0.25 이하로 관리되어야 한다

    자유도 9, 95%에서 χ²0.95 = 3.325

    5.76 >3.325

    (Ho를 기각 개선되었다고 할 수 있음)


    Six sigma

    Σ(χi-χ)²

    Σ(Yi-Y)²

    S1² =

    S2² =

    n1-1

    n2-1

    F 분포 개념

    F 분포는 두 집단의 산포를 비교하는데 이용됨

    모집단 X

    모집단 Y

    표본집단

    표본집단

    N(μ1, σ1²)

    X₁

    X₂

    X₃

    Xn1

    N(μ1, σ2²)

    Y₁

    Y₂

    Y₃

    Yn2

    F 분포

    S1²/σ1²

    F = 은 자유도

    (n1-1, n2-1)인 F분포에

    따른다 신뢰도 α에서

    Fα (n1-1, n2-1) 값은

    F표로 주어짐

    S2²/σ2²

    두 집단간의 모분산 비교는 표본의 분산을

    이용

    X, Y 두 집단의 분산이

    동일한가 하는 가설은

    σ1²

    Ho :

    = 1

    σ2²

    두 집단의

    분산 검정

    S1²

    σ₁, σ₂는 모르므로 표본집단의 S₁, S₂를 이용하여 값이

    Fα(n1-1, n2-1) 값보다 크면 Ho를 기각

    S2²


    Six sigma

    SA²

    5.29

    검정 통계량 :

    F =

    =

    = 2.35

    SB²

    2.25

    F 분포의 이용

    F 분포는 산포가 중요한 제품에서 두 집단의 산포를 평가할 수 있게 해줌

    해 답

    Case

    σA²

    Ho : σA = σB²= 1

    Ha : >1

    σB²

    A 기계

    12번 측정

    편차 : 2.3

    B 기계

    10번 측정

    편차 : 1.5

    A 기계의 생산품이 B 기계

    생산품보다 산포가 크다고

    할 수 있는가?

    표에서 F0.05(11, 9) = 3.10

    기각역은 F>3.10(유의 수준 5%)

    기각역에 속하지 않으므로 Ho를

    기각할 수 없다

    (σA, σB는 다르다고 할 수 없다)


    Six sigma

    B사 T제품 출시 후

    광고투자와 매출액을 분석해

    보니 아래의 결과를 얻었다.

    이 Data에서 광고투자를

    늘리면 매출액이 상승한다고

    결론 내릴 수 있을까?

    매출액과 광고비는

    선형관계가 있음

    매출액(Y)

    6

    ·

    30

    3

    ·

    광고료(억원)

    매출액(십억원)

    2

    ·

    20

    4

    8

    9

    8

    8

    12

    6

    10

    6

    9

    9

    20

    22

    15

    17

    30

    18

    25

    10

    20

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    7

    ·

    ·

    10

    ·

    5

    ·

    4

    ·

    1

    10

    ·

    9

    광고료(X)

    2

    4

    6

    8

    10

    12

    5.회귀분석(Regression Analysis)

    독립변수(X)가 종속변수(Y)에 어떻게 영향을 끼치는지를 정량화 한 것


    Six sigma

    y

    y = a + bχ

    ·

    e₂

    e₁

    a+bχ₂

    ·

    y

    ^

    ^

    Sχy

    b = ,

    a = y - bχ

    a+bχ₁

    Sχ²

    χ

    χ₁

    χ₂

    최소 자승법

    회귀 직선식은 오차항의 크기가 가장 작아지도록 설정함

    최소자승법

    회귀분석의 Model

    χ, y간에 선형관계가 있다고 가정하면

    • 어떤 yi 값에서 오차항은

    • ei = yi - (a + bχi)

    • 모든 점 y₁y₂··· yn의 오차의 합은

    • Σei = Σ(yi - a - bχi)

    • 최소자승법(Σei)²이 최소가 되도록 a, b값을 정하는 것

    y₁ = a + bχ₁+ e₁

    y₂ = a + bχ₂+ e₂

    선형식으로 설명

    안 되는 부분

    오차항으로

    N(0, σ²)에 따른

    yn = a + bχn + en


    Six sigma

    (χ₁- χ) (y₁- y)

    y

    y = -2.27 + -2.609χ

    (yi - y)

    y = 18.6

    (χi - χ)

    χ

    χ₁

    χ

    Σ(χi-χ)²

    46

    S²χ =

    =

    n - 1

    9

    (χ가 변할 때

    y가 변한 크기)

    Σ(χi-χ)²(yi- y)

    120

    Sχy =

    =

    n - 2

    9

    Sχy

    120

    b =

    =

    = 2.609

    S²χ

    46

    9 = y - bχ = -2.270

    최소 자승법

    회귀 직선식은 오차항의 크기가 가장 작아지도록 설정함

    χ

    y

    (χ₁- χ)²

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    4

    8

    9

    8

    8

    12

    6

    10

    6

    9

    9

    20

    22

    15

    17

    30

    18

    25

    10

    20

    16

    0

    1

    0

    0

    16

    4

    4

    4

    1

    (-4)× (-9.6)

    0

    3.4

    0

    0

    4 × 11.4

    (-2)× (-0.6)

    2× 6.4

    (-2)× (-8.6)

    1.4

    80

    186

    46

    120


    Six sigma

    y

    yi

    y = a + bχ

    ·

    ^

    yi - yi

    ^

    yi - y

    y

    SSR

    r² =

    Sy²

    χ

    ^

    ^

    (yi - yi)² = (yi - y)² + (yi - yi)²

    회귀직선의 분산 분석

    회귀직선을 구한 다음에는 그 회귀직선이 얼마나 문제를 설명하는지를 검증해야 함

    회귀분석의 설명력

    회귀직선의 분산분석

    요 인

    제곱합

    자유도

    제곱합 평균

    Fo

    SSR

    회귀선

    잔차

    SSR

    SSE

    Sy²

    1

    n - 2

    n - 1

    SSR

    SSE/n-2

    SSE

    n - 2

    Fo>Fα(1, n-2)이면 회귀직선은 유의

    yi가 y에서 떨어진 크기를 SSR,

    SSE로 구분하여 2집단으로 만든 후

    2집단의 분산을 비교하는

    F검정을 통해 판단

    총변동

    회귀선으로

    설명되는

    변동

    설명 안 되는

    오차항(잔차)

    Sy² = SSR + SSE


    Six sigma

    ^

    ^

    χ

    y

    yi = a+bχi

    잔차

    yi - y

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    4

    8

    9

    8

    8

    12

    6

    10

    6

    9

    9

    20

    22

    15

    17

    30

    18

    25

    10

    20

    8.17

    18.60

    21.21

    18.60

    18.60

    29.04

    13.38

    23.81

    13.38

    21.21

    0.83

    1.43

    0.79

    -3.60

    -1.60

    0.96

    4.62

    1.19

    -3.38

    -1.21

    -8.63

    0

    2.61

    0

    0

    1.04

    -5.24

    5.21

    -5.22

    2.61

    80

    186

    0

    313.04

    R² =

    = 85%

    368.40

    분산분석의 예

    B사 T제품 매출증가의 85%를 광고비가 설명해 줌

    분산분석

    Ho : b = 0(상관관계가 없다)

    Ha : b ≠ 0(상관관계가 있다)

    요 인

    자유도

    제곱합

    MS

    Fo

    회귀선

    잔차

    313.04

    55.36

    368.40

    1

    8

    9

    313.04

    6.92

    45.24

    Fo0.05(1, 8) = 5.31

    Fo>5.31(Ho 기각)

    회귀선은 95% 신뢰수준으로

    믿을 수 있으며 Data 변화의

    85%를 설명해 준다

    광고비를 증가 시키면 매출액이 증가 ! ! !


    Six sigma

    χ1(광고)

    χ(판촉인원)

    y(매출)

    4

    8

    9

    8

    8

    12

    6

    10

    6

    9

    4

    10

    8

    5

    10

    15

    8

    13

    5

    12

    9

    20

    22

    15

    13

    30

    18

    25

    10

    20

    요 인

    자유도

    제곱합

    MS

    Fo

    회귀선

    잔차

    332.12

    36.28

    367.40

    2

    7

    9

    166.06

    5.17

    32.04

    332.12

    r² =

    = 90.15%

    368.40

    더욱 설명력이 향상되었음

    다중회귀분석

    B사 T제품의 매출이 광고비뿐 아니라 판촉에 투입된 영업사원 숫자에도

    상관 관계가 있는 것 같다면 어떻게 해석될 수 있을까?

    분산분석

    Ho : b₁ = b₂(상관관계가 없다)

    Ha : b ≠ b₂ ≠ 0(상관관계가 있다)

    유의수준 α = 0.05에서

    Fo0.05(2, 7) = 4.75

    회귀식 y = a+b1+χ1+b2χ2는

    y = -0.651+1.551χ1+0.760χ2으로

    표시됨

    Fo>4.75(Ho 기각)


    Six sigma

    6.실험계획법(DOE)

    실험계획법은 품질을 결정하는 인자를 찾고 최적화 시켜 나가는 방법

    반제품 수율

    DOE 전개순서/Tool

    왜 DOE가 필요?

    • Screening

    • - 품질에 영향을 미치는

    • 인자를 검출

    • - 교락법(Resolution Ⅲ)

    • 공정정의 (Process Characterization)

    • - 공정의 개선방향을 제시

    • - 요인 배치법(Full Factorial)

    • 최적화(Optimization)

    • - 최적 조건을 선정

    • - 반응표면 분석

    • (Response Surface)

    개시제

    농도

    (○)

    반응

    온도

    (×)

    반응

    압력

    (×)

    교반력

    (×)

    원료

    투입비

    (○)

    작업

    방법

    (×)

    유의

    인자

    • 과거의 Data가 근본원인을 밝혀 주지 못할 때

    • 공정에 대한 지식이 부족할 때

    • 최적 작업조건 설정이 필요할 때

    L

    H

    -

    -

    -

    -

    -

    -

    L

    -

    -

    -

    개선

    방향

    수율 = f(개시제 - χ₁, 원료 투입비χ₂)

    수율

    최적점

    최적점

    χ₂

    χ₁


    Six sigma

    Nylon

    함량

    Test Data(강도)

    Total

    AVE.

    1회

    2회

    3회

    4회

    5회

    15

    20

    25

    30

    35

    7

    12

    14

    19

    7

    7

    17

    18

    25

    10

    15

    12

    18

    22

    11

    11

    18

    19

    19

    15

    9

    18

    19

    23

    11

    49

    77

    88

    108

    54

    9.8

    15.4

    17.6

    21.6

    10.8

    376

    15.4

    반복(Repetition)

    DOE 사례

    Scatter Daigram(산점도)

    BS사 원사의 강도는 Nylon 함량에 따라

    달라진다고 추정된다

    Nylon 함량별로 5번씩 시험한 결과를 정리하면

    × - × : 평균

    강도

    ·

    :측정치 분포

    ·

    인자

    (Factor)

    ·

    ·

    20

    ×

    · ·

    · ·

    · ·

    ·

    · ·

    Ave = 15.4

    수준

    (Level)

    ×

    ×

    ·

    ·

    · ·

    ·

    · ·

    ×

    ·

    ·

    ·

    ×

    10

    ·

    · ·

    Nylon

    함량

    25

    30

    35

    15

    20

    처리(Treatment) : 인자가 2개 이상일 때

    인자별 수준의 조합된 상태

    ex) A₁수준(100℃)× B₂수준(5kg)

    과연 Nylon 함량이 강도를

    결정한다고 할 수 있을까?


    Six sigma

    × - × : 평균

    반응

    Ho : (y1 - y) = (y2 - y) = · · · = (y5 - y) = 0

    Ho : 적어도 한 수준의 효과는 있다

    ×

    요 인

    제곱합

    자유도

    제곱평균

    Fo

    y(총평균)

    ×

    ×

    Nylon

    함량

    오차

    475.76

    (SST)

    161.20

    (SSE)

    4

    20

    118

    8.6

    14.76

    yi - y

    yi - y

    ×

    y1

    ×

    ·

    yi - y1

    yi

    24

    636.96

    (TSS)

    3수준

    4수준

    5수준

    1수준

    2수준

    (y1-y)보다 (yi-y1)가 크면

    수준의 변화가 오차에 묻혀버림

    분산 분석

    인자의 유의 여부는 총변동을 수준의 변화로 인한 변동(SST)와 수준내 오차로

    인한 변동(SSE)로 나누어 두 변동간의 차이를 F 분포를 이용하여 검정

    분 산 분 석

    (yi - y)² = (y1 - y)² + (yi - y1)²

    F0.05(4, 20) = 2.87< 14.76

    Nlyon 함량은 유의하다

    총변동

    모집단

    평균에서

    떨어진 크기

    (TSS)

    수준으로

    인한 변동

    (SST)

    수준 내

    피할 수 없는

    오차 때문에

    생기는 변동

    (SSE)


    Six sigma

    반복

    Test No.

    Test 순서

    Nylon 함량

    강도(yi)

    yi - y

    y - y

    yi - y

    - 5.6

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    20

    3

    9

    11

    7

    15

    2

    10

    4

    8

    1

    5

    15

    15

    15

    15

    15

    20

    20

    20

    20

    20

    25

    1

    2

    3

    4

    5

    1

    2

    3

    4

    5

    1

    7

    7

    15

    11

    9

    12

    17

    12

    18

    18

    14

    - 8.4

    - 8.4

    - 0.4

    - 4.4

    - 6.4

    - 3.4

    1.6

    - 3.4

    2.6

    2.3

    - 1.6

    - 2.8

    - 2.8

    5.2

    1.2

    - 0.8

    - 3.4

    1.6

    - 3.4

    2.6

    2.6

    y = 15.4

    TSS

    = Σ(yi-y)²

    SST

    = Σ(y-y)²

    SSE

    = Σ(yi-y)²

    SST

    ST²

    =

    = Fo

    SSE

    SE²

    분산 분석 Data 구조

    1수준

    2수준


    Six sigma

    Test Data표

    전지의 전해질과 사용온도에 따른 수명

    A 인자(온도, ℉)

    수명

    Ave.

    A1(15)

    A1(15)

    A1(15)

    130, 155

    74, 180

    34, 40

    80, 75

    20, 70

    82, 58

    B₁

    998

    83.2

    B인자

    (재질)

    재질3

    ·

    150, 188

    159, 126

    136, 122

    106, 115

    25, 70

    58, 45

    B₂

    1,300

    108.3

    재질1

    ·

    138, 110

    168, 160

    174, 120

    150, 139

    96, 104

    82, 60

    ·

    B₁

    1,501

    125.1

    재질2

    1738

    1291

    770

    3,799

    -

    온도

    Ave.

    148.6

    107.6

    64.2

    -

    105.5

    2

    3

    1

    인자가 2개인 경우

    인자가 2개 이상일 때도 똑같은 원리로 결과치의 차이가 인자의 수준차인지

    단순한 오차 범위에 해당되는 것인지를 판단

    인자의 영향

    온도변화와 재질변화가 모두

    수명을 단축하는 방향

    두 인자간 교호작용이 없다


    Six sigma

    2인자 분산 분석

    제곱합

    (TSS)

    자유도

    제곱평균

    결론

    요 인

    Fo

    P값

    F값

    재질

    온도

    교호

    오차

    유의

    유의

    유의

    -

    10,683

    39,119

    9,614

    18,231

    2

    2

    4

    27

    5,342

    19,558

    2,403

    675

    7.91

    28.97

    3.56

    -

    0.0020

    0.0001

    0.0186

    -

    F0.05, 2, 27 = 2.73

    상동

    F0.05, 4, 27 = 3.35

    -

    77,647

    35

    이 실험을 다중회귀 분석으로 표현하면

    Y(수명) = a + bχ1(재질) + cχ2(온도) + dχ1χ2로 표시

    10,683(재질) + 39,119(온도) + 9,614(교호)

    이 Model의 설명력은

    r² =

    77,647

    = 76%


    Six sigma

    공정능력지수 / 장기,단기 Sigma

    • 공정능력지수는 설계능력(규격) 대비 공정이 나타내고 있는 6 sigma 범위(공정능력)의 비율임.

    Cp = 설계능력(규격) / 공정능력

    m0

    -3sst

    +3sst

    공정능력

    Process Width

    Design Width

    설계능력(규격)

    T

    LSL

    USL


    Six sigma

    제품 또는

    서비스

    재료

    방법

    환경

    Cp(Process Capability) 프로세스 능력

    사람

    프로세스

    설비

    고객

    INPUT

    PROCESS

    OUTPUT

    OUTPUT

    Process표준

    프로세스 능력 =

    =

    INPUT

    Process산포

    프로세스능력은 공정능력, 영업능력, 구매능력, 개발능력 등등


    Six sigma

    공정문제의 일반적 증상

    산포의 문제

    Cp < 1.0

    불안정 문제

    • 기형(freak)

    • 경향(trend)

    • 주기(cycle)

    • 변화(shift)

    중심치 이탈

    Cp-Cpk > 0.33

    정상 단계


    Special causes

    가피 원인(special causes) 의 발견

    공정문제는 공정에 영향을 주는 가피원인에 기인함.

    관리 범위 내의 산포

    관리 범위 밖의 산포


    Process capability ratios cp

    단기 Process Capability Ratios: Cp

    • 설계 여유(Margin)가 클수록, 단위당 총 결함수(TDU; Total Defects Per Unit )는 작아진다.

    • 설계 여유는 공정능력지수(Cp)에 의해 측정된다.

    Cp =

    (특성치의 최대 허용가능한 범위)

    (공정의 자연적인 변동 -- Short Term)

    Cp =

    │USL-LSL│

    ±3s st

    m0

    -3sst

    +3sst

    ZST = 3 Cp

    Process Width

    Design Width

    Note: Pp 는 한가지 예외를 제외하고는 Cp와 공식이 같다. 즉, Pp는 long-term의 표준편차를 적용하고 Cp는 short-term의 표준편차를 적용한다.

    T

    LSL

    USL


    Process capability ratios cpk

    │T - m│

    k =

    (USL-LSL)/2

    단기 Process Capability Ratios: Cpk

    Cpk = Cp (1 - k)

    Note: PpK 는 한가지 예외를 제외하고는 CpK와 공식이 같다. 즉, PpK는 long-term의 표준편차를 적용하고 CpK는 short-term의 표준편차를 적용한다.

    K는 공차범위에서 정적인(Static) 평균의 변화(Shift)가 차지하는 비율을 말한다.

    Example: Cp = 2, k = .25

    Cpk = 2( 1 - .25 ) = 1.5

    m0

    m1

    6s st

    4.5s st

    0 ppm

    3.4 ppm

    T

    LSL

    USL


    Process capability ratios pp

    장기 Process Capability Ratios: Pp

    Note: Pp 는 한가지 예외를 제외하고는 Cp와 공식이 같다. 즉, Pp는 long-term의 표준편차를 적용하고 Cp는 short-term의 표준편차를 적용한다.

    Pp =

    │USL-LSL│

    ZLT = 3 Pp

    ±3s lt

    (특성치의 최대 허용가능한 범위)

    Pp =

    (공정의 정상적인 변동 -- Long Term)

    Short-term 분포

    오직 순수한 에러, 즉 White Noise만을 보여준다. 평균은 인위적으로 목표값(target)에 일치한다.(계산식을 통해)

    m0

    -3slt

    +3slt

    Long-term 분포

    white noise와black noise를 보여준다.

    이 경우에 black noise는 표준편차를 크게하는 경향이 있는 공정의 non-random한 변동을 말한다.

    Pp의 경우에, 평균은 인위적으로 목표값(target)에 일치한다.(계산식을 통해)

    Process Width

    Design Width

    T

    LSL

    USL


    Process capability ratios ppk

    │T - m│

    k =

    (USL-LSL)/2

    장기 Process Capability Ratios: Ppk

    Ppk = Pp (1 - k)

    Note: Ppk 는 한가지 예외를 제외하고는 Cpk와 공식이 같다. 즉, Ppk는 long-term의 표준편차를 적용하고 Cpk는 short-term의 표준편차를 적용한다.

    K는 공차범위에서 정적인(Static) 평균의 변화(Shift)가 차지하는 비율을 말한다.

    m0

    m1

    Long

    Term

    정적인 변화가 있는

    Long Term

    Short

    Term

    T

    LSL

    USL


    Six sigma

    Pooled 표준편차와 Overall 표준편차

    Overall 표준편차 : 총변동, 즉 우연요인과 이상요인이 모두 작용한 변동.

    Pooled 표준편차 : 군내변동(Within Variation), 우연요인/ Noise만 작용한 변동.

    시간에 지남에 따라 군간에 발생하는 차이는 고려하지 않는다.

    Example

    n= 4, g= 5 : 4개의 연속 샘플을 5회에 걸쳐 수집

    n

    SSW : Within Sum of Square(군내변동)

    1

    2

    3

    4

    SSW (g)

    Group

    5.0

    1

    1

    2

    3

    4

    SSW=

    2

    2

    3

    4

    5

    5.0

    3

    3

    4

    5

    6

    5.0

    4

    5

    6

    5.0

    4

    7

    5

    7

    8

    5

    6

    5.0

    Pooled 표준편차 = SSW / g(n-1) = 1.2909

    Overall 표준편차 는 전체 20개의 데이터를 일반적인 샘플 표준편차(s)를 구하는 공식에 따라 구함. Overall 표준편차 = 1.8496

    Minitab의 Stat>Quality Tools>Capability Analysis 에서 ‘Estimate’에서 지정할 수 있음. 단, Pooled Stdev는 n>1일 때만 구할 수 있음


    Six sigma

    Data 해석의 주요 Point

    Six Sigma에서는 단기/장기간 1.5σ Shift를 인정

    Su(10)

    Data의 의미

    품 질 능 력

    • 주요 공정 조건이 일정하다고 보고 공정이 나타내는 변동만 관찰

    • 설비 노후, 종업원의 숙달 환경변화 등의 통제 불가능 요소(Special Cause)의 영향으로 χ, σ값이 변하게 됨

    • Data 누적에 따라 분포가 완만해짐

    • (산업마다 다름)

    • 공정/품질의 장기적 변동이 반영됨

    • Z 분포에서 Spec-Out

    • 부분의 확률로부터 직접 계산

    제 1기간

    σst₁

    (0.5)

    Su-χ

    Ex)

    Zst =

    σst

    단기

    10-7

    χ₁

    =

    =

    3

    0.5

    Data

    Drift

    • Cpk 값에서 계산

    제 2기간

    Cpk = 1.0

    Zst = Cpk×3=3.0

    σst₂

    (0.5)

    • 단기 6 Sigma가 품질 목표

    Zlt = Zst-1.5

    : 1.5σ Shift는

    최대 인정 폭

    Χ₂(7)

    • Z 분포표에서 직접 계산

    10-8.5

    Zlt =

    = 1.5

    장기

    1.0

    σlt(1.0)

    • Ppk 값에서 계산

    Ppk = 0.5

    Zlt = 3×Ppk=1.5

    χ 8.5

    • 장기 4.5 Sigma가 3.4ppm 수준


    Six sigma

    제품설계에서 1.5 Sigma Shift의 의미

    Short-term Performance

    Long-term Performance


  • Login