Sponsored Links
This presentation is the property of its rightful owner.
1 / 103

现代工业统计 PowerPoint PPT Presentation


  • 94 Views
  • Uploaded on
  • Presentation posted in: General

现代工业统计. 南京财经大学统计系 2011 ~ 2012 年第一学期. 第三章 抽样检验. 问题 1. 何为抽样检验 ? 2. 怎样进行抽样检验 ? 3, 为什么要抽样检验 ? 抽样检验的科学性何在 ?. 第三章 抽样检验. 1. 抽样检验的概述 2. 从购买钢笔抽样检验谈起 3, 抽样检验基本 概念 、 思路 、 一般原理 4. 各类数据的常用抽样检验方案 (计数 ) 5. 计量一次抽样检验方案 6. 多次抽样检验 和 序贯抽样检验 7. 抽样检验 Minitab 软件实践. 概述(本章思路、内容概要).

Download Presentation

现代工业统计

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


20112012


1. ?

2. ?

3, ?

?


1.

2.

3,

4.

5.

6.

7.Minitab


100


1.>2.3.Minitab

Nnn<NK(IEC


1

,, , , ,


5000

AQL 1.5%RQL 10% AQL RQLLTPD 5000 52 52 2 2


Minitab

1 > >

2

3/

4

5 (AQL) 1.5 (RQL LTPD) 10

6 (Alpha) 0.05 (Beta) 0.10

7 5000

8


Minitab:OC

.:/

:5000

.(AQL):1.5

(Alpha):0.05

RQLLTPD:10

(Beta):0.1

.

52

2

52<=2

.

AOQATI

1.50.957 0.043 1.420 266.2

10.00.0970.903 0.956 4521.9

(AOQL)=2.6034.300


-


5000 52 52 2 2

MinitabAQL (1.5%) 0.957 0.043 95% 1.5% RQL (10%) 0.097 0.903 10%

100% (AOQ) (ATI)


AOQ AQL 1.4% RQL 1.0%4.300 (AOQL) = 2.603

ATI 1.5% 266.2 10% 4521.9

??



1

2

3

4


  • 1.

  • 1

    100


100

2



:

K

(IEC


:



A

B

C

ABC

pr

:p


>>1.>

>2.>3.

:

K

(IEC


1. n

2. N

N

3. Acacceptance number

Ac

4. Rerejection number

Re

5. P

D N p=100D/ N%

6.


7. AQLacceptance quality limit

8. LTPD lot tolerance percent defective

LTPD

9.PRproduces risk

.

10.CRconsumers risk

.


A

B

C


ABC

: p


1.

2.

3,

4.

5.


1.

2.

3.


1. OC

OC(operating Characteristic Curve)

2.

3.OC

4.


(p)

(p)

2.6


  • 1. AQL

  • 2.

  • 4.


1.

2.

3.



(Sequential sampling inspection),A.Wald,,,

sequential analysis19471945


1


3.6.1

N N n>Ac0n n d>Acd<=Ac

nn d+1


3.6.21/2XX=1X=0p=PX=10<p<1

H 1 :0<p1/2

H21/2<p<1

H11/2H11/20<<1


3.6.3XN,2, ,(0,1) L>0L

40 3.6.2 3.6. 3


2

(sequential sampling)

50%75%50%

n=10050%75%5075%


(1) P0P1P0=0.50(50%)P1=0.7575%()()

(2) PP0PP1PP1PP0

(3)

(3.6.1)


mhm()mhhaPP0hrPP1

(4) (3.6.1)mh

(5) mh()hahhrhhahhrhhaP()P0(50%hhrPP1(75%

(6) PP0P1E(m)m=E(m)hhhaPP0hhrPP1P=h/mP


3.6.2

(Poisson)

(3.6.3


3.6.4 P0=0.5050%P1=0.7575%=0.100.10=0.100.10


DPS3.0

p0p1

0.10.10.50.75

2011-10-17 12:12:35

: Y=-2.0000 + 0.6309N

: Y=2.0000 + 0.6309N

1-1.372.63

2-0.743.26

9859.8363.83

9960.4664.46

10061.0965.09

0.0000 --- 3.1699

0.5000 --- 12.2203

0.6250 --- 17.1779

0.7500 --- 13.4374

1.0000 --- 5.4190


b0=1b1=3=0.1, =0.1(Poisson) .

DPS3.0

m0m1

0.10.113

2011-10-17 12:20:59

: Y=-2.0000 + 1.8205N

: Y=2.0000 + 1.8205N

1-0.183.82

21.645.64

33.467.46

99178.23182.23

100180.05184.05

=1.65










OC

3.3-1


OCOpereting Characteristic Curve

3.3.1N=100n=10, Ac=0,10

:p=0,p=1,p=0.01

p=0.110

p=0.550

OCp L(p) L(p)OC3.3-1


3.3.2

(1020)P=0.1p=0.2

3.3.3

(1)

(10050)p=0.050.10.2

3.3.3

(2)

(10050)p=0.050.10.2


  • 1

  • 2

  • 3


3.3.2

(1020)P=0.1p=0.2

:N=10,n=2,Ac=0Np=0.11

p=0.22

L(0.2)<L(0.1)


3.3.3

(1)

(10050)p=0.050.10.2

:N=100n=5,n/N=0.05<0.1,Ac=0

0.7696,0.5838,0.3193100<0.01


(10050)p=0.050.10.2

3.3.3

(2)

:N=100n=5,n/N=0.05<0.1,p,=np=0.25,0.5,1d=Ac=0

p(p<0.1),


OC

OC

3.3.4

n,Ac,pL(p),(1),(2),(3),

Ac,n,pL(p),(3),(4),(5)Ac0,


:ATIAOQASN!


2.6

2.6

3%95%12%10%


AQL

AQL


1.

2.

3.



AQL N

AQL6.1~6.3

2.7

2.8

2.9





2.10

2.11




2.12




2.13



2.14


2.14


1


2


Minitab

Minitab


Minitab

- /


N n c c 10,000 89 01 2 2

1

3.5.1 5000 AQL 1.5%RQL 10%


Minitab

1 > >

2

3/

4

5 (AQL) 1.5 (RQL LTPD) 10

6 (Alpha) 0.05 (Beta) 0.10

7 5000

8


:/

:5000

(AQL):1.5

(Alpha):0.05

RQLLTPD:10

(Beta):0.1

52

2

52<=2

AOQATI

1.50.9570.0431.420266.2

10.00.0970.9030.9564521.9

(AOQL)=2.6034.300


3.5.2

5000 52 2 AQL 1.5%RQL 10%

Minitab

1 > >

2

3/

4

(AQL) 1.5 (RQL LTPD) 10


: AQL RQL

6 52 0 2

7 5000

8

:/

:5000

(AQL):1.5

RQLLTPD:10


(n)(c)AOQATI

520 1.50.4560.5440.6762745.2

52010.00.0040.996 0.0414979.3

522 1.5 0.9570.0431.420266.2

52210.00.0970.903 0.9564521.9

(n)(c)AOQL

520 0.6931.887

522 2.6034.300

n<=c


Z - /

Minitab (0-100%) (0-1)


3.5.3 2 2500 0.09 AQL 100 RQL 300

Minitab

1 > > > /

2

3

5 (AQL) 100RQL LTPD 300

6 (Alpha) 0.05 (Beta) 0.10

7 0.09

8 0.025

9 2500


-/

(LSL)0.09

0.025

2500

(AQL):100

(Alpha):0.05

RQLLTPD:300

(Beta):0.1

104

k:3.55750

Z.LSL=-/

Z.LSL>=k


AOQATI

1000.9500.05091.1223.2

3000.1000.90028.62261.4

(AOQL)=104.6140.0


Minitab

: 5000 52 2 AQL 1.5%RQL 10%


Minitab:

1 > >

2

3/

4

5 (AQL) 1.5 (RQL LTPD) 10

AQL RQL6 52 0 2

7 5000

8


:/

:5000

(AQL):1.5

RQLLTPD:10

(n)(c)AOQATI

520 1.50.456 0.544 0.6762745.2

520 10.00.004 0.996 0.0414979.3

5221.50.9570.0431.420266.2

52210.00.0970.9030.9564521.9

(n)(c)AOQL

520 0.693 1.887

522 2.603 4.300

n<=c


AQL AQL 1.5% 0.456 95% 1.5%

5000


ATI 1.5% 266.2 10% 4521.9


  • Login