# Chapter 25 - PowerPoint PPT Presentation

1 / 39

Chapter 25. Electric Circuits. Direct Current. When the current in a circuit has a constant direction, the current is called direct current Most of the circuits analyzed will be assumed to be in steady state , with constant magnitude and direction

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

Chapter 25

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

## Chapter 25

Electric Circuits

### Direct Current

• When the current in a circuit has a constant direction, the current is called direct current

• Most of the circuits analyzed will be assumed to be in steady state, with constant magnitude and direction

• Because the potential difference between the terminals of a battery is constant, the battery produces direct current

• The battery is known as a source of emf

### Sources of emf

• The source that maintains the current in a closed circuit is called a source of emf

• Any devices that increase the potential energy of charges circulating in circuits are sources of emf (e.g. batteries, generators, etc.)

• The emf (ε) is the work done per unit charge

• Emf of a source is the maximum possible voltage that the source can provide between its terminals

• SI units: Volts

### Electric Circuits

• A circuit is a collection of objects usually containing a source of electrical energy connected to elements that convert electrical energy to other forms

• A circuit diagram – a simplified representation of an actual circuit – is used to show the path of the real circuit

• Circuit symbols are used to represent various elements

### Resistors in Series

• When two or more resistors are connected end-to-end, they are said to be in series

• The current is the same in all resistors because any charge that flows through one resistor flows through the other

• The sum of the potential differences across the resistors is equal to the total potential difference across the combination

### Resistors in Series

• The equivalent resistance has the effect on the circuit as the original combination of resistors (consequence of conservation of energy)

• For more resistors in series:

• The equivalent resistance of a series combination of resistors is greater than any of the individual resistors

### emf and Internal Resistance

• A real battery has some internal resistancer; therefore, the terminal voltage is not equal to the emf

• The terminal voltage: ΔV = Vb – Va

ΔV = ε – Ir

• For the entire circuit (R – load resistance):

ε = ΔV + Ir

= IR + Ir

### emf and Internal Resistance

ε = ΔV + Ir= IR + Ir

• ε is equal to the terminal voltage when the current is zero – open-circuit voltage

I = ε / (R + r)

• The current depends on both the resistance external to the battery and the internal resistance

• When R >> r, r can be ignored

• Power relationship: I ε= I2 R + I2 r

• When R >> r, most of the power delivered by the battery is transferred to the load resistor

### Resistors in Parallel

• The potential difference across each resistor is the same because each is connected directly across the battery terminals

• The current, I, that enters a point must be equal to the total current leaving that point (conservation of charge)

• The currents are generally not the same

### Resistors in Parallel

• For more resistors in parallel:

• The inverse of the equivalent resistance of two or more resistors connected in parallel is the algebraic sum of the inverses of the individual resistance

• The equivalent is always less than the smallest resistor in the group

### Problem-Solving Strategy

• Combine all resistors in series

• They carry the same current

• The potential differences across them are not necessarily the same

• The resistors add directly to give the equivalent resistance of the combination:

Req = R1 + R2+ …

### Problem-Solving Strategy

• Combine all resistors in parallel

• The potential differences across them are the same

• The currents through them are not necessarily the same

• The equivalent resistance of a parallel combination is found through reciprocal addition:

### Problem-Solving Strategy

• A complicated circuit consisting of several resistors and batteries can often be reduced to a simple circuit with only one resistor

• Replace resistors in series or in parallel with a single resistor

• Sketch the new circuit after these changes have been made

• Continue to replace any series or parallel combinations

• Continue until one equivalent resistance is found

### Problem-Solving Strategy

• If the current in or the potential difference across a resistor in the complicated circuit is to be identified, start with the final circuit and gradually work back through the circuits (use formula ΔV = I R and the procedures describe above)

### Chapter 25Problem 20

What resistance should you place in parallel with a 56-kΩ resistor to make an equivalent resistance of 45 kΩ?

Gustav Kirchhoff

1824 – 1887

### Kirchhoff’s Rules

• There are ways in which resistors can be connected so that the circuits formed cannot be reduced to a single equivalent resistor

• Two rules, called Kirchhoff’s Rules(Laws) can be used instead:

• 1) Junction (Node) Rule

• 2) Loop Rule

### Kirchhoff’s Rules

• Junction (Node) Rule (A statement of Conservation of Charge): The sum of the currents entering any junction must equal the sum of the currents leaving that junction

• Loop Rule (A statement of Conservation of Energy): The sum of the potential differences across all the elements around any closed circuit loop must be zero

### Junction Rule

I1 = I2 + I3

• Assign symbols and directions to the currents in all branches of the circuit

• If a direction is chosen incorrectly, the resulting answer will be negative, but the magnitude will be correct

### Loop Rule

• When applying the loop rule, choose a direction for transversing the loop

• Record voltage drops and rises as they occur

• If a resistor is transversed in the direction of the current, the potential across the resistor is – IR

• If a resistor is transversed in the direction opposite of the current, the potential across the resistor is +IR

### Loop Rule

• If a source of emf is transversed in the direction of the emf (from – to +), the change in the electric potential is +ε

• If a source of emf is transversed in the direction opposite of the emf (from + to -), the change in the electric potential is – ε

### Equations from Kirchhoff’s Rules

• Use the junction rule as often as needed, so long as, each time you write an equation, you include in it a current that has not been used in a previous junction rule equation

• The number of times the junction rule can be used is one fewer than the number of junction points in the circuit

• The loop rule can be used as often as needed so long as a new circuit element (resistor or battery) or a new current appears in each new equation

• You need as many independent equations as you have unknowns

### Problem-Solving Strategy

• Draw the circuit diagram and assign labels and symbols to all known and unknown quantities

• Assign directions to the currents

• Apply the junction rule to any junction in the circuit

• Apply the loop rule to as many loops as are needed to solve for the unknowns

• Solve the equations simultaneously for the unknown quantities

### Chapter 25Problem 72

The figure shows a portion of a circuit used to model muscle cells and neurons. All resistors have the same value R = 1.5 MΩ, and the emfs are ε1 = 75 mV, ε2 = 45 mV and ε3 = 20 mV. Find the current through ε3, including its direction.

### RC Circuits

• If a direct current circuit contains capacitors and resistors, the current will vary with time

• At the instant the switch is closed, the charge on the capacitor is zero

• When the circuit is completed, the capacitor starts to charge, and the potential difference across the capacitor increases, until the charge reaches its maximum (Q = Cε)

### Charging Capacitor in an RC Circuit

• Once the capacitor is fully charged (maximum charge is reached), the current in the circuit is zero, and the potential difference across the capacitor matches that supplied by the battery

### Charging Capacitor in an RC Circuit

• The charge on the capacitor varies with time

q = Q (1 – e -t/RC )

• The time constant,  = RC, represents the time required for the charge to increase from zero to 63.2% of its maximum

• In a circuit with a large (small) time constant, the capacitor charges very slowly (quickly)

• After t = 10, the capacitor is over 99.99% charged

### Discharging Capacitor in an RC Circuit

• When a charged capacitor is placed in the circuit, it can be discharged

### Discharging Capacitor in an RC Circuit

• The charge on the capacitor varies with time

q = Qe -t/RC

• The charge decreases exponentially

• At t =  = RC, the charge decreases to 0.368 Qmax; i.e., in one time constant, the capacitor loses 63.2% of its initial charge

### Chapter 25Problem 34

An uncharged 10-µF capacitor and a 470-kΩ resistor are in series, and 250 V is applied across the combination. How long does it take the capacitor voltage to reach 200 V?

### Meters in a Circuit – Ammeter, Voltmeter

• An ammeter is used to measure current in line with the bulb – all the charge passing through the bulb also must pass through the meter

• A voltmeter is used to measure voltage (potential difference) – connects to the two ends of the bulb

### Electrical Safety

• Electric shock can result in fatal burns

• Electric shock can cause the muscles of vital organs (such as the heart) to malfunction

• The degree of damage depends on

• the magnitude of the current

• the length of time it acts

• the part of the body through which it passes

### Effects of Various Currents

• 5 mA or less

• Can cause a sensation of shock

• Generally little or no damage

• 10 mA

• Hand muscles contract

• May be unable to let go a of live wire

• 100 mA

• If passes through the body for just a few seconds, can be fatal

Chapter 25:

Problem 18

200 kJ

Chapter 25:

Problem 26

2 A

Chapter 25:

Problem 30

1 kW