Download
1 / 18

SUPERFICIES - PowerPoint PPT Presentation


  • 274 Views
  • Uploaded on

SUPERFICIES. SUPERFICIES RADIADAS ADAPTADORAS. Introducción. Planos tangentes a dos curvas planas Planos concurrentes Planos paralelos Adaptadores poliédricos Adaptadores mixtos. Plano tangente a dos curvas planas. . t . c 2. β. c 1. t β. i. T β. I.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' SUPERFICIES' - sanam


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Superficies

SUPERFICIES

SUPERFICIES RADIADAS ADAPTADORAS

OCW UPM


Introducci n
Introducción

Planos tangentes a dos curvas planas

Planos concurrentes

Planos paralelos

Adaptadores poliédricos

Adaptadores mixtos

OCW UPM


Plano tangente a dos curvas planas
Plano tangente a dos curvas planas

t

c2

β

c1

t β

i

I

OCW UPM


Plano tangente a dos curvas contenidas en planos paralelos
Plano tangente a dos curvas contenidas en planos paralelos

c2

t

d=I∞

β

c1

i∞

t β

OCW UPM


Convoluta de plano tangente
Convoluta de plano tangente

Superficie envolvente de las posiciones de un plano tangente a dos curvas

OCW UPM



Aristas paralelas
Aristas paralelas

Aristas paralelas

OCW UPM


Aristas no paralelas
Aristas no paralelas

Aristas no paralelas

OCW UPM





Aristas paralelas

Cierre de la superficie

Aristas no paralelas

OCW UPM


Uni n entre recta y curva
Unión entre recta y curva

t

c2

β

c1

t β

i

I

OCW UPM


Recta y curva
Recta y curva

r’’

c’’

r’

T1

d

c’

OCW UPM



Ej

T1

T2

OCW UPM


e’’’

e’

OCW UPM


ad