Isospin symmetry test on the semimagic 44 cr
This presentation is the property of its rightful owner.
Sponsored Links
1 / 18

Isospin Symmetry test on the semimagic 44 Cr PowerPoint PPT Presentation


  • 61 Views
  • Uploaded on
  • Presentation posted in: General

Isospin Symmetry test on the semimagic 44 Cr. Toward the dripline in the f7/2 shell. 44 Cr. N=20, 40Ca +4 protons Mid mass, Tz=-2 36 [email protected] N=Z. T=1 and T=2 mirror nuclei. Shell evolution Gaps Z=14 and N=14 No cross shell excitations. f7/2. f7/2. N,Z=20. N,Z=20. d3/2. d3/2.

Download Presentation

Isospin Symmetry test on the semimagic 44 Cr

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Isospin symmetry test on the semimagic 44 cr

Isospin Symmetry test on the semimagic 44Cr

Toward the dripline

in the f7/2 shell


44 cr

44Cr

  • N=20, 40Ca +4 protons

  • Mid mass, Tz=-2

  • [email protected]

N=Z


T 1 and t 2 mirror nuclei

T=1 and T=2 mirror nuclei

Shell evolution

Gaps Z=14 and N=14

No cross shell excitations

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

36Ca

36S


Cross conjugate nuclei

Cross conjugate nuclei

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

44Cr

44Ca

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

36Ca

36S


44 cr1

44Cr

f5/2

f5/2

p1/2

p1/2

p3/2

p3/2

f7/2

f7/2

N,Z=20

N,Z=20

π

π

ν

ν

44Cr

44Ca

1360

2+

1248

1157

2+

2+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

104

9.8

10.3

B(E2)[e2fm4]


44 cr2

44Cr

p3/2

p3/2

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

π

π

ν

ν

44Cr

44Ca

1571

2+

1360

2+

1248

1157

2+

2+

0+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

sdfp

104

9.8

10.3

105.6

B(E2)[e2fm4]


Particle hole cross shell excitations

Particle-hole cross-shell excitations

1571

2+

1360

2+

1248

1157

2+

2+

0+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

sdfp

104

9.8

10.3

105.6

B(E2)[e2fm4]


44 cr3

44Cr

  • Isospin symmetric: 44Ca

3307

3-

3285

6+

Sp = 2800 keV (SY)

2283

4+

1157

2+

0+

0+

44Cr

44Ca


F7 2 shell and inc nuclear forces

49

49

25Mn24

24Cr25

f7/2 shell and INC nuclear forces

VCm,

VCM

VB

From the MED

we extract information

of nuclear structure

properties

  • How the nucleus generates its angular momentum

  • Evolution of the deformation along a rotational band

  • Isospin non-conserving terms in the nuclear interaction

  • Learn about the configuration of the states


36 ca from 40 ca

36Ca from 40Ca

Fragmentation: 40Ca → 37Ca 38 µbarn

Knock-out:37Ca → 36Ca 2 mbarn


44 cr from 50 cr

44Cr from 50Cr

Fragmentation: 50Cr → 45Cr 1.5 µbarn

Knock-out:45Cr → 44Cr 2 mbarn


44 cr from 58 ni

44Cr from 58Ni

Fragmentation: 58Ni → 45Cr 0.6 µbarn

Knock-out:45Cr → 44Cr 2 mbarn


Feasibility fragmentation knock out

Feasibility: fragmentation + knock-out

  • Comparison to 36Ca:

    • Cross section: /50

    • AGATA efficiency: x5

    • AGATA resolution: x2

    • Energy of the gamma (3.0→ 1.2 MeV): x3

    • Beam current: x30 (3*108→1010)

  • 44Cr now is a factor 20 easier!

P. Doornenbal et al. Physics Letters B 647 (2007) 237–242


Feasibility fragmentation coulex

Feasibility: fragmentation + coulex

  • Directly produced 44Cr: 24 nbarn

    • More than an order of magnitude lost

  • Coulex on secondary target

    • 2+ predicted collective (2p2h, 4p4h)

    • Enhanced B(E2)

    • Good excitation cross section (~200 mbarn)

  • Factor of ~10 in statistics for the 2+


B e1 in t 2

B(E1) in T=2

  • Janecke:

    EC (A,T,TZ)= EC0(A,T)- TzEC1(A,T)+ (3Tz2-T(T+1))EC2(A,T)

  • Warburton

    “Corresponding E1 transition in conjugate nuclei have equal strength”

  • T=2 Tz=-2

    EC = EC0 + 2 EC1(A,2)+ 6EC2(A,T)

  • T=2 Tz=-1

    EC = EC0 + 1 EC1(A,2)- 3EC2(A,T)

  • T=2 Tz=0

    EC = EC0 + - 6EC2(A,T)

  • T=2 Tz=+1

    EC = EC0 + 1 EC1(A,2)- 3EC2(A,T)

  • T=2 Tz=+2

    EC = EC0 - 2 EC1(A,2)+ 6EC2(A,T)

WILKINSON - ISOSPIN IN NUCLEAR PHYSICS


  • Login