Isospin symmetry test on the semimagic 44 cr
Download
1 / 18

Isospin Symmetry test on the semimagic 44 Cr - PowerPoint PPT Presentation


  • 73 Views
  • Uploaded on
  • Presentation posted in: General

Isospin Symmetry test on the semimagic 44 Cr. Toward the dripline in the f7/2 shell. 44 Cr. N=20, 40Ca +4 protons Mid mass, Tz=-2 36 Ca@RISING. N=Z. T=1 and T=2 mirror nuclei. Shell evolution Gaps Z=14 and N=14 No cross shell excitations. f7/2. f7/2. N,Z=20. N,Z=20. d3/2. d3/2.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha

Download Presentationdownload

Isospin Symmetry test on the semimagic 44 Cr

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Isospin symmetry test on the semimagic 44 cr

Isospin Symmetry test on the semimagic 44Cr

Toward the dripline

in the f7/2 shell


44 cr

44Cr

  • N=20, 40Ca +4 protons

  • Mid mass, Tz=-2

  • 36Ca@RISING

N=Z


T 1 and t 2 mirror nuclei

T=1 and T=2 mirror nuclei

Shell evolution

Gaps Z=14 and N=14

No cross shell excitations

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

36Ca

36S


Cross conjugate nuclei

Cross conjugate nuclei

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

44Cr

44Ca

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

d5/2

d5/2

π

π

ν

ν

36Ca

36S


44 cr1

44Cr

f5/2

f5/2

p1/2

p1/2

p3/2

p3/2

f7/2

f7/2

N,Z=20

N,Z=20

π

π

ν

ν

44Cr

44Ca

1360

2+

1248

1157

2+

2+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

104

9.8

10.3

B(E2)[e2fm4]


44 cr2

44Cr

p3/2

p3/2

f7/2

f7/2

N,Z=20

N,Z=20

d3/2

d3/2

s1/2

s1/2

π

π

ν

ν

44Cr

44Ca

1571

2+

1360

2+

1248

1157

2+

2+

0+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

sdfp

104

9.8

10.3

105.6

B(E2)[e2fm4]


Particle hole cross shell excitations

Particle-hole cross-shell excitations

1571

2+

1360

2+

1248

1157

2+

2+

0+

0+

0+

0+

44Ca

Exp

kb3g

gxpf1a

sdfp

104

9.8

10.3

105.6

B(E2)[e2fm4]


44 cr3

44Cr

  • Isospin symmetric: 44Ca

3307

3-

3285

6+

Sp = 2800 keV (SY)

2283

4+

1157

2+

0+

0+

44Cr

44Ca


F7 2 shell and inc nuclear forces

49

49

25Mn24

24Cr25

f7/2 shell and INC nuclear forces

VCm,

VCM

VB

From the MED

we extract information

of nuclear structure

properties

  • How the nucleus generates its angular momentum

  • Evolution of the deformation along a rotational band

  • Isospin non-conserving terms in the nuclear interaction

  • Learn about the configuration of the states


36 ca from 40 ca

36Ca from 40Ca

Fragmentation: 40Ca → 37Ca 38 µbarn

Knock-out:37Ca → 36Ca 2 mbarn


44 cr from 50 cr

44Cr from 50Cr

Fragmentation: 50Cr → 45Cr 1.5 µbarn

Knock-out:45Cr → 44Cr 2 mbarn


44 cr from 58 ni

44Cr from 58Ni

Fragmentation: 58Ni → 45Cr 0.6 µbarn

Knock-out:45Cr → 44Cr 2 mbarn


Feasibility fragmentation knock out

Feasibility: fragmentation + knock-out

  • Comparison to 36Ca:

    • Cross section: /50

    • AGATA efficiency: x5

    • AGATA resolution: x2

    • Energy of the gamma (3.0→ 1.2 MeV): x3

    • Beam current: x30 (3*108→1010)

  • 44Cr now is a factor 20 easier!

P. Doornenbal et al. Physics Letters B 647 (2007) 237–242


Feasibility fragmentation coulex

Feasibility: fragmentation + coulex

  • Directly produced 44Cr: 24 nbarn

    • More than an order of magnitude lost

  • Coulex on secondary target

    • 2+ predicted collective (2p2h, 4p4h)

    • Enhanced B(E2)

    • Good excitation cross section (~200 mbarn)

  • Factor of ~10 in statistics for the 2+


B e1 in t 2

B(E1) in T=2

  • Janecke:

    EC (A,T,TZ)= EC0(A,T)- TzEC1(A,T)+ (3Tz2-T(T+1))EC2(A,T)

  • Warburton

    “Corresponding E1 transition in conjugate nuclei have equal strength”

  • T=2 Tz=-2

    EC = EC0 + 2 EC1(A,2)+ 6EC2(A,T)

  • T=2 Tz=-1

    EC = EC0 + 1 EC1(A,2)- 3EC2(A,T)

  • T=2 Tz=0

    EC = EC0 + - 6EC2(A,T)

  • T=2 Tz=+1

    EC = EC0 + 1 EC1(A,2)- 3EC2(A,T)

  • T=2 Tz=+2

    EC = EC0 - 2 EC1(A,2)+ 6EC2(A,T)

WILKINSON - ISOSPIN IN NUCLEAR PHYSICS


ad
  • Login