1 / 41

DARK MATTER IN GALAXIES

DARK MATTER IN GALAXIES. Paolo Salucci (SISSA). Dennis: Rotation Curves, Dark Matter, Nature of, Role of Baryons. Importance of the topics but low interest from Scientific Community. Persic , M ., S. P ., 1988, MNRAS, 234 131 Dark and visible matter in spiral galaxies

saman
Download Presentation

DARK MATTER IN GALAXIES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DARK MATTER IN GALAXIES Paolo Salucci (SISSA)

  2. Dennis: Rotation Curves, Dark Matter, Nature of, Role of Baryons. • Importance of the topics but lowinterest from Scientific Community

  3. Persic, M., S. P., 1988, MNRAS, 234 131 • Dark and visible matter in spiral galaxies • Persic, M.;S. P.,Stel, F.1996 MNRAS, 281, 27The universal rotation curve of spiral galaxies - I. The dark matter connection • Gentile, G.; S. P.,Klein, U. 2004 MNRAS, 351, 903 • The cored distribution of dark matter in spiral galaxies • S.P+2007 MNRAS • The universal rotation curve of spiral galaxies out the virial radius II • S.P. ...... ADS reviews • Persic, M., S. P. 1988, MNRAS, 234 131 • Dark and visible matter in spiral galaxi • Persic, M.; S.P.; Stel, F.1996 MNRAS, 281, 27 • The universal rotation curve of spiral galaxies - I. The dark matter connection • Gentile, G.; S. P.; Klein, U. + 2004 MNRAS, 351, 903 • The cored distribution of dark matter in spiral galaxies • S.P. +2007 MNRAS • The universal rotation curve of spiral galaxies out the virial radius II

  4. The Realm of Galaxies 15 mag range, 4 types, 16 mag arsec-2.range Central surface brightness vs magnitude

  5. Stellardistribution L(R/RD)/LT is independent of luminosity The light surface profile I(r) = I0exp (-R/RD). A mass lenght-scale luminosity independent? 1000 objects Colors are radially constant 3RD

  6. Does the kinematics probe the mass distribution of galaxies ? Yes. • Radial Tully Fisher • Inner mass distribution Vmax RTF: magnitude vs log velocity @ different radii xi RD, [ xi=0.5,1,…5] 3 samples (600, 89, 78) M =ai + bi log V(xi) No relationship ↔ V does not trace the mass

  7. Radial TF

  8. Slope and scatter of the TF-relations: MB = ai + bi log V(xi) The slope increases from -4 to -8. No change in slope ↔ no DM or a constant fraction of DM The minimum scatter 0.2 mag at 2.2 RD

  9. V traces the potential DM emerges at large radii MODEL

  10. Modelling the very inner circular velocities: light traces the mass

  11. Phenomenology of spiral kinematics The rotation curves3200 coadded individual C+06 PSS

  12. RC slopes vary among galaxies and within them. They indicate the presence and the amount of dark matter. At 3 disk length scales

  13. The URC concept • @ fixed L and x=R/RD,the Cosmic Variance of V(x,L) is one order of magnitude smaller than the variations that: • in each galaxy, V(x) shows as x varies. • V(x) shows, @ each x, in galaxies of different L

  14. 3.avi The URC ../Desktop/3.avi

  15. Rotation curve modelling. • : from I-band photometry • : from HI observations •dark halos with constant density cores • dark halos with “cusps” (NFW, Moore) •HI-scaling •MOdified Newtonian Dynamics ..t4bt5b

  16. NFW Halos BurkertHalos

  17. cored vs cusped VNFW fits uniquely a rotation curve

  18. Modelling the Universal Rotation Curve rotation velocity stellar contribution dark matter contribution Stars LM Dm

  19. A family governed by luminosity halo central density core radius DM fraction luminosity

  20. The role of the slope of the RC

  21. Halo central density vs core radius scalingr0 =10-23 (r0 /kpc)-1g/cm3 dSph B WL URC

  22. and Virial halo masses

  23. Weak lensing With a density profile we model the tangential shear Obtain the structural free parameters. NFW B Same results as those obtained from RCs. Burkert profile provides excellent fit, better than NFW. Christiane Frigerio Martins

  24. DM halo density: observations vs simulations

  25. The UNIVERSAL velocity CURVE NFW URCL URCH

  26. Dark halos from simulations Halos form hierarchically bottom-up via grav. amplifications of initial density flucts. Most evident property: CENTRALCUSP Navarro, Frenk & White, ApJ 462, 563 (1996) Bullock et al., MNRAS 321, 559 (2001) The cusp vs core issue cuspy NFW density profiles disagree with observed kinematics. comparison galaxy by galaxy and of coadded kinematics. NFW HALOS • Fit badly the RCs • Unphysically too low stellar mass-to-light ratios • Unphysically too high halo masses

  27. Moore, Nature 370, 629 (1994) Kravtsovet al., ApJ 502, 48 (1998) Salucci & Burkert, ApJ 537, L9 (2000) de Blok, McGaugh & Rubin, AJ 122, 2396 (2000) Salucci MNRAS, 320, 1 (2001) Marchesini, D'Onghia, Chincariniet al. ,ApJ 575, 801 (2002) de Blok & Bosma, A&A 385, 816 (2002) Salucci, Walter & Borriello, A&A 409, 53 (2003) Donato, Gentile, Salucci MNRAS, 353, L17 (2004) Gentile, Salucci, Klein et al., MNRAS 351, 903 (2004) Gentile, Burkert, Salucciet al. ApJ 634, L145 (2005) Spekkens & Giovanelli AJ 132, 1426 (2006) Gentile, Salucci, Klein, et al. MNRAS, 375, 199 (2007) Salucci, Lapi, Tonini et al MNRAS 378, 41 (2007) Kuzio de Naray, McGaugh & de Blok, ApJ 676, 920 (2008) de Blok, Walter, Brinkset al. AJ 136, 2648 (2008) Spano, Marcelin, Amramet al. MNRAS 383, 297 (2008) Walter, Brinks, de Bloket al. AJ, 136, 2563 (2008) Trachternach, de Blok, Walter, et al. AJ, 136, 2720 (2008) vanEymeren, Trachternach, Koribalski, et al. arXiv:0906.4654

  28. Cored halos the best fits A test case: ESO 116-G12 halo stars gas

  29. 50 objects investigated NFW inconsistent

  30. DDO 47: a decisive case NFW Theory Obis ssw Obs Theory

  31. Results fromTrieste: analysis of highquality RCs URC fits to RCs Borriello & Salucci, MNRAS 323, 285 (2001) DDO 47 Gentile et al., ApJ 634, L145 (2005) Gentile, Tonini & Salucci, A&A 467, 925 (2007)

  32. DDO 47: non circular motions? Triaxial halos predictions V (minor axis) R

  33. Dwarf Spheroidal Galaxies A Universal Mass Profile Walker et al 09

  34. LCDM Universal Rotation Curve from NFW profile and MMW theory

  35. AN INTRIGUING PROPERTY

  36. A matter enigma

  37. 22 bright E/S0satz ~ 0.2 (SLACS: Gavazzi et al. 2007) DM in early-types: weak+stronglensing

  38. DARK MATTER IS PRESENT IN GALAXIES IT IS STRONGLY RELATED TO THE LUMINOUS MATTER THERE IS A SOLID EMPIRICAL SCENARIO

  39. We can uniquely mass model a RC disk-halo components, known surf phot, reliable V(R) and dV/dR, resolution ~ 0.3RD

  40. A way out?angular momentum exchange between baryons and DMTonini Lapi Salucci cusp core

More Related