1 / 31

Permutahedra and the Saneblidze-Umble Diagonal

Permutahedra and the Saneblidze-Umble Diagonal. By Stephen Weaver Directed by Dr. Ron Umble. Computational Geometry the study of algorithms to solve problems in geometry. Permutahedra.

sai
Download Presentation

Permutahedra and the Saneblidze-Umble Diagonal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Permutahedra and the Saneblidze-Umble Diagonal By Stephen Weaver Directed by Dr. Ron Umble

  2. Computational Geometry the study of algorithms to solve problems in geometry

  3. Permutahedra • Geometric shapes based on permutations of the partitions of a set {1,2}  {3} • Each permutation corresponds to a face of some permutahedron • We use bar notation for convenience {3} {1,2} = 3|12 • The single partition {1,2,3,…,n} corresponds to the top dimensional face

  4. Permutahedra • The boundary of a face consists of adding a single bar in every possible way 1|2 2|1 12 • Two faces are adjacent if their boundaries intersect 2|1|3 1|3|2 12|3 1|23 1|2|3

  5. Permutahedra - Examples P2 P1 1|2 2|1 12 1 3|12 P3 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

  6. Permutahedra - Examples P2 P1 1|2 2|1 12 1 3|12 P3 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

  7. Permutahedra - Examples P2 P1 1|2 2|1 12 1 3|12 P3 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 2|3|1 1|23 2|13 1|2|3 12|3 2|1|3

  8. Permutahedra - Examples P2 P1 1|2 2|1 12 1 3|12 P3 3|1|2 3|2|1 P4 13|2 23|1 123 1|3|2 123|4 2|3|1 12|3|4 12|34 1|23 2|13 1|2|3 12|3 2|1|3

  9. Diagonal Given a set S, Diagonal of S  S { (x,x) | x є S } S S

  10. Diagonal on P2 P2 12  2|1 1|2  2|1 2|1  2|2 1|2  12 2|1  1|2 1|2  1|2

  11. Step Matrix Example 5 6 4 7 8 Reading a Step Matrix 1 9 2 3 1 2 3 4 14|2|3  4|123

  12. Step Matrix Example 5 6 4 7 8 Reading a Step Matrix 1 9 2 3 1 2 3 4 14|2|3

  13. Step Matrix Example 5 6 4 7 8 Reading a Step Matrix 1 9 2 3 1 2 3 4 14|2|3  4|123

  14. Transforming a Step Matrix 1 3 1 3 2 5 2 5 4 4 1 3 1 2 2 3 4 5 4 5

  15. S-U Diagonal on P3 1 1 2 1 3 1 2 2 2 3 1 2 3 1 3 2 3 3 1|2|3123 1|23 13|2 12|32|13 2|1323|1 13|23|12 1233|2|1 1 1 2 2 3 3 12|323|1 1|233|12

  16. Calculating the S-U Diagonal • Skip step matrix stage – Use permutations and strings • One – to – one correspondence between permutations and step matrices

  17. Calculating the S-U Diagonal • Skip step matrix stage – Use permutations and strings • One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=4 B=4

  18. Calculating the S-U Diagonal • Skip step matrix stage – Use permutations and strings • One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41 B=4|1

  19. Calculating the S-U Diagonal • Skip step matrix stage – Use permutations and strings • One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|3 B=4|13

  20. Calculating the S-U Diagonal • Skip step matrix stage – Use permutations and strings • One – to – one correspondence between permutations and step matrices 2 4132 1 3 4 A=41|32 B=4|13|2 14|23  4|13|2

  21. S-U Diagonal • Acts multiplicatively w.r.t. the bar operation (12|34) = (12) | (34) = (1|212 + 122|1) | (3|434 + 344|3) = (1|2|3|412|34) + (1|2|3412|4|3) + (12|3|42|1|34) + (12|342|1|4|3)

  22. Generic Diagonal abc Three Element Diagonal 2|134 a|b|c  abc a|bc  ac|b ab|c  b|ac b|ac  bc|a ac|b  c|ab abc  c|b|a ab|c  bc|a a|bc  c|ab (2|134) = (2)| (134) = 2|1|3|4  2|134 2|1|34  2|14|3 2|13|4  2|3|14 2|3|14  2|34|1 2|14|3  2|4|13 2|134  2|4|3|1 2|13|4  2|34|1 2|1|34  2|4|13

  23. Associativity • (ab)c = a(bc) • m( m(a,b) , c ) = m( a , m(b,c) ) • m(m x id)(a,b,c) = m(id x m)(a,b,c) • S-U Diagonal takes one input and produces two outputs – “comultiplication” • ( id) (X) = (id ) (X) ? Is  “coassociative?”

  24. Not Coassociative - Example (x1) (123) + (1x) (123) = 2|1|32|1323|1 + 1|2|32|1323|1 +1|3|213|23|12 + 1|2|313|23|12 +12|32|133|2|1 + 12|32|132|3|1 +12|32|1|323|1 + 12|32|3|123|1 +1|2313|23|2|1 + 1|2313|23|2|1 +1|231|3|23|12 + 1|233|1|23|12 (mod 2) This measures the error from being coassociative.

  25. Homotopy Coassociativity • Let Vi be the Z2-vector space whose basis is the i dimensional faces of Pn • Let  : Vi  Vi-1 be the boundary operation • Let H : Vi  (V*  V*  V*) i+1 such thatH+H=(id)+ (id) • H acts multiplicatively with respect to bar H(13|24) = H(13) | H(24)

  26. Homotopy Function • H(1) = 0 • H(12) = 0 • H(123) = 12|3x2|13x23|1 + 1|23x13|2x3|12 • H(1234) = ?

  27. Calculating H(1234) • H = (id) + (id) + H • H(1234) = [(id) + (id) + H](1234) • X = H(1234) є (V*  V*  V*)4 • (X) = [(id) + (id) + H](1234)

  28. Calculating H(1234) • H = (id) + (id) + H • H(1234) = [(id) + (id) + H](1234) • X = H(1234) є (V*  V*  V*)4 • (X) = [(id) + (id) + H](1234) (V* V* V*)4 (V* V* V*)3

  29. Calculating H(1234) • H = (id) + (id) + H • H(1234) = [(id) + (id) + H](1234) • X = H(1234) є (V*  V*  V*)4 • (X) = [(id) + (id) + H](1234) (V* V* V*)4 120,960 x 73,729 (V* V* V*)3

  30. One Solution for H(1234) H(1234) = 12|34x24|13x4|2|3|1 + 12|34x24|13x4|3|2|1 + 123|4x3|24|1x34|2|1 + 123|4x3|2|14x34|2|1 + 123|4x3|2|14x3|24|1 + 124|3x4|2|13x4|23|1 + 12|34x24|1|3x4|2|13 + 12|34x24|3|1x4|23|1 + 12|34x2|14|3x24|3|1 + 12|34x2|14|3x2|4|13 + 12|34x2|14|3x4|23|1 + 12|34x2|4|13x4|23|1 + 13|24x34|1|2x4|3|12 + 13|24x3|14|2x34|2|1 + 13|24x3|14|2x3|4|12 + 14|23x4|13|2x4|3|12 + 1|234x14|3|2x4|13|2 + 1|234x14|3|2x4|3|12 + 1|234x4|13|2x4|3|12 + 23|14x3|24|1x34|2|1 + 2|134x24|3|1x4|23|1 + 12|34x2|1|4|3x24|13 + 12|34x2|4|1|3x24|13 + 13|24x3|1|4|2x34|12 + 13|24x3|4|1|2x34|12 + 12|3|4x23|14x34|2|1 + 12|3|4x23|14x3|24|1 + 12|3|4x2|134x24|3|1 + 12|3|4x2|134x4|23|1 + 12|4|3x24|13x4|23|1 + 13|2|4x3|124x34|2|1 + 1|23|4x134|2x4|3|12 + 1|23|4x13|24x34|1|2 + 1|23|4x13|24x3|14|2 + 1|23|4x13|24x4|3|12 + 1|23|4x3|124x34|2|1 + 1|24|3x14|23x4|13|2 + 1|24|3x14|23x4|3|12 + 1|2|34x124|3x4|23|1 + 1|2|34x124|3x4|2|13 + 1|2|34x14|23x4|13|2 + 1|2|34x14|23x4|3|12 + 1|2|34x24|13x4|23|1 + 1|3|24x134|2x4|3|12 + 2|13|4x23|14x34|2|1 + 2|13|4x23|14x3|24|1 + 2|14|3x24|13x4|23|1 + 12|3|4x2|13|4x234|1 + 12|3|4x2|13|4x23|14 + 12|3|4x2|1|34x24|13 + 12|3|4x2|3|14x234|1 + 12|4|3x2|14|3x24|13 + 13|2|4x3|1|24x34|12 + 13|4|2x3|14|2x34|12 + 1|23|4x13|2|4x34|12 + 1|23|4x13|2|4x3|124 + 1|23|4x1|3|24x134|2 + 1|23|4x3|14|2x34|12 + 1|23|4x3|1|24x34|12 + 1|24|3x14|2|3x4|123 + 1|2|34x14|2|3x4|123 + 1|2|34x1|24|3x14|23 + 1|2|34x1|24|3x4|123 + 1|2|34x2|14|3x24|13 + 1|3|24x3|14|2x34|12 + 2|13|4x2|3|14x234|1

  31. Future Work • Finding an H with minimal number of terms • Modifying / Parallelizing the row reduction algorithm to calculate H for n > 4 Picture on second page found at: http://www.lightstorm3d.de/portfolio/back_to_gaya/stills/programming/collisionDeformer.jpg Cross  Partial  Union  Delta 

More Related