1 / 42

Analitikai Kémia

Analitikai Kémia. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK. Komplexképződéssel kapcsolatos alapfogalmak (általános kémia, szervetlen kémia). - Komplex vegyület, központi ion, ligandum, koordinációs szám. Fémion (központi atom) Lewis sav. Ligandum Lewis bázis. Komplex.

saburo
Download Presentation

Analitikai Kémia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analitikai Kémia

  2. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Komplexképződéssel kapcsolatos alapfogalmak (általános kémia, szervetlen kémia) - Komplex vegyület, központi ion, ligandum, koordinációs szám Fémion (központi atom) Lewis sav Ligandum Lewis bázis Komplex - Szolvátkomplexek, akvakomplexek - Koordinációs szféra, koordinációs szám, koordinációs geometria - Donorcsoport, donoratom, egyfogú, többfogú, ambidentát ligandumok - Kelátkomplexek, keláteffektus - Protonkomplexek, protonált komplexek - Törzskomplexek, vegyes ligandumú komplexek

  3. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Komplex vegyületek nevezéktana kationos komplexek: pl. [Ag(NH3)2]+ - diamin-ezüst(I)-ion [Cu(H2O)6)]2+ - hexakva-réz(II)-ion koord. szám (görögül) fémion töltése (magyarul) ligandum neve (görögül) fémion neve (magyarul) anionos komplexek: pl. [Ag(CN)2]- - diciano-argentát(I)-ion [HgI4)]2- - tetrajodo-merkurát(II)-ion [Fe(CN)6]3- - hexaciano-ferrát(III)-ion fémion töltése (magyarul) koord. szám (görögül) fémion neve (görögül) + “át” képző ligandum neve (magyarul) + “o” képző

  4. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Lépcsőzetes komplexképződési egyensúlyok M + L ML ML + L ML2 ... ... MLN-1 + L MLN Lépcsőzetes stabilitási állandók (Ki): ; ;………; Az egymást követő lépcsőket jellemző asszociációs állandók egyre kisebbek: K1 > K2 > … > KN Hasonlóság a többértékű bázisok lépcsőzetes protonálódási folyamataihoz: protonkomplexek. (Összevetés savak lépcsőzetes disszociációjával.)

  5. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK A komplexek közvetlen képződése komponenseikből M + L ML M + 2L ML2 ... ... M + NL MLN Kumulatív (bruttó) stabilitási állandók; stabilitási szorzatok vagy komplexszorzatok (i): ; ;………;

  6. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK A lépcsőzetes és a kumulatív komplexstabilitási állandók kapcsolata ... 1 < 2 < … < N

  7. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Koncentráció eloszlási görbék Anyagmérleg: cM = [M] + [ML] + [ML2] + … + [MLN] A fenti egyenletbe behelyettesítjük az egyes komplexféleségek egyensúlyi koncentrációinak a i állandók segítségével megadott kifejezését: cM = [M] + 1[M][L] + 2[M][L]2 + … + N[M][L]N cM = [M] (1 + 1[L] + 2[L]2 + … + N[L]N) ...

  8. 1,0 ML M 4 0,8 0,6 M x ML 2 ML ML 0,4 3 0,2 0,0 15 12 9 -logL KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Koncentráció eloszlási görbék Lépcsőzetes stabilitási állandók statisztikus arányai: K1/K2 = 2,67; K2/K3 = 2,25; K3/K4 = 2,67

  9. 1,0 1,0 M ML ML ML ML ML 2 3 4 4 M 0,8 0,8 0,6 0,6 M M x x ML 3 0,4 0,4 ML 0,2 0,2 ML 2 0,0 0,0 4 3 2 1 0 15 12 9 6 3 0 -logL -logL KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Koncentráció eloszlási görbék Statisztikus: K1/K2 = 2,67; K2/K3 = 2,25; K3/K4 = 2,67

  10. KOMPLEXKÉPZŐDÉSI EGYENSÚLYOK Koncentráció eloszlási görbék Ha nagy ligandumfelesleget alkalmazunk és az MLN komplex stabilitása elég nagy, akkor: cM [MLN] Ahol [L] a ligandumfelesleg koncentrációja [L]  cL - N[MLN] Analitikai alkalmazás lehetősége (?). (Vegyük észre, hogy: cL= [L] + [ML] + 2 [ML2] + … + N[MLN] a ligandum elhanyagolásmentes anyagmérlege.)

  11. Komplexképződési egyensúlyok analitikai alkalmazása Minőségi analízis példák szervetlen kémiai tanulmányokból Mennyiségi analízis titrimetriás módszerek (komplexometria, kelatometria) (+ később fogunk rájuk visszatérni: gravimetriás módszerek redoxi reakciók szelektívvé tétele - álcázás ioncserés elválasztások)

  12. Komplexképződési egyensúlyok analitikai alkalmazása KOMPLEXOMETRIA ABC lg120128 lg2 - 2014 lg3 - - 18 lg4 - -20 cM = 0,1 M cL = 0,1 M

  13. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A lépcsőzetes komplexképződési reakciók: nem egyértelműek(lépcsőzetesség miatt többféle termék egyidejűen jelen van az ekvivalencia- pontban is) nem sztöchiometrikusak (ligandumfelesleg szükséges a reakció teljessé tételéhez) Többfogú ligandumok alkalmazásának szükségessége: csak nagy stabilitású ML kelátkomplex képződik.

  14. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Schwarzenbach: többfogú ligandumok (komplexonátok) (pl. NTA, EDTA, CDTA EGTA, stb.) – nincs velük ilyen gond, mert: - alkálifémek és Ag+kivételével (az Ag+ nem képez kelátkomplexet) minden fémionnal stabilis komplexet képeznek - mindig 1:1 összetételű komplexképződik - nagy egyensúlyi stabilitás - gyors reakciók (kivétel Al3+ és különösen Cr3+, Co3+) - a végpontjól jelezhető (pl. vizuálisan fémindikátorokkal)

  15. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Kelátkomplexképző többfogú ligandumok: NTA (nitrilo-triecetsav) EDTA (etiléndiamin- tetraecetsav) CDTA (ciklohexándiamin- tetraecetsav)

  16. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Kelátkomplexképző többfogú ligandumok: M-EDTA komplexek stabilitása: +3 oxidációs állapotú fémionnal lg > 20 +2 oxidációs állapotú átmenetifém-ionnal lg ~ 10-20 +2 oxidációs állapotú alkáliföldfém-ionnal lg > 8-10 M2+-EDTA kelátkomplexek szerkezete:

  17. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Keláteffektus lg H (kJ/mol) S (J/molK) [Cu(NH3)4] 13,0 -99 -83 [Cu(en)2] 19,6 -102 +33 [Cu(ten)] 20,1 -96 +63 Első közelítésben: entrópiaeffektus [Cu(H2O)6]2+ + 4NH3 = [Cu(NH3)4(H2O)2]2+ + 4H2O [Cu(H2O)6]2+ + ten = [Cu(ten)(H2O)2]2+ + 4H2O [M(NH3)2(H2O)4] + en = [M(en)(H2O)4] + 2 NH3 A kelátképző ligandum koordinálódása során a molekuláris rendezetlenség jelentősen nő, ami + S hozzájárulást jelent a G csökkenéshez.

  18. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége Az analitikai eljárás alapjául választott M + L ML reakció mellett egyéb reakciók is lejátszódhatnak az oldatban az M, L ill. ML részvételével: M + L ML + xOH- + nA + jH+ + xOH- + jH+ + nA M(OH)x MAn HjA ML(OH)x MLHj MLAn hidrolízis egyéb komplexképző hidrolízis egyéb komplexképző protonálódás protonálódás Ezek általában az MA komplexre nézve „stabilitás csökkentő” tényezőként szerepelnek, mivel növelik a komplex disszociációjának, illetve csökkentik a képződésének mértékét.

  19. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége A zavaró folyamatok figyelembe vehetők a látszólagos stabilitási állandóval (K’): termodinamikai stabilitási állandó látszólagos stabilitási állandó [M’]: Az L komplexképzővel nem reagált fémion koncentrációja (látszólagos fémion-koncentráció): M = M  1 M csak a jelenlévő egyéb komplexképző (A, OH-) koncentrációjától függ.

  20. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége A zavaró folyamatok figyelembe vehetők a látszólagos stabilitási állandóval (K’): termodinamikai stabilitási állandó látszólagos stabilitási állandó [L’]: Az M fémionnal nem reagált ligandum koncentrációja (látszólagos ligandum-koncentráció): L = L  1 L csak az oldat pH-jától függ (protonálódási folyamatok).

  21. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége

  22. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége A zavaró folyamatok figyelembe vehetők a látszólagos stabilitási állandóval (K’): termodinamikai stabilitási állandó látszólagos stabilitási állandó [ML’]: Az ML komplex „összkoncentrációja” beleértve a mellékreakcióba lépett komplexekét is (látszólagos komplexkoncentráció): ML = Pontszerzési lehetőség: egészítse ki a fenti egyenletet! ML  1 ML függ az oldat pH-jától és a jelenlévő egyéb komplexképzők (A, OH-) koncentrációjától .

  23. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége A zavaró folyamatok figyelembe vehetők a látszólagos stabilitási állandóval (K’): termodinamikai stabilitási állandó látszólagos stabilitási állandó M = L = ML = Figyeljük meg, hogy az αM és αL csökkenti, míg az αMLnöveli a Látszólagos stabilitási állandó értékét.

  24. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége Amennyiben egyáltalán nem játszódnak le zavaró mellékreakciók, minden  = 1, azaz K = K’. Egyéb esetekben az   1, és értéke a mellékreakciókat előidéző komponensek egyensúlyi koncentrációi és a mellékreakciókra jellemző egyensúlyi állandók ismeretében számítható. K’ tehát adott körülmények (pH, cA) között állandó, de e körülmények megváltozása során értéke változik. Ha viszont e körülményeket állandó értéken tartjuk, akkor az ML komplex képződésére vonatkozó számítások során a látszólagos stabilitási álladót ugyanolyan módon használhatjuk, mint a termodinamikai állandót mellékreakciók hiányában.

  25. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége

  26. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbe számítása 1. ekvivalenciapont előtti tartomány Ahol a = 0 - 1 vagy 0 - 100% közötti érték: a titráltság foka. A cM számítása a kiindulási fémion-koncentráció alapján történik a hígulást figyelembe véve. 2. ekvivalenciapont 3. ekvivalenciapont utáni (túltitrált) oldat Pontszerzési lehetőség: hogyan vezethető le a fenti 3. ponthoz tartozó egyenlet?

  27. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbe számítása 10 ml 0,1 M Zn2+ oldatot titrálunk 0,1 M EDTA oldattal; pH = 8, K’ = 1016 V (mL) a(%) [Zn2+’](M) pM’ 0 0 0,1 1 5 50 0,0333 1,48 9 90 5,26.10-3 2,28 9,9 99 5,03.10-4 3,30 9,99 99,9 5,05.10-5 4,30 10 100 2,24.10-8 7,35 10,01 100,1 10-13 13,0 10,1 101 10-14 14,0 11 110 10-15 15,0 15 150 2.10-16 15,7

  28. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbék K csökkenése

  29. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbék cM csökkenése

  30. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbék cL növekedése

  31. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás titrálási görbék ? pH változása

  32. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A látszólagos stabilitási állandó és jelentősége

  33. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás indikátorok - A vizuális indikátorok szerves festékmolekulák, melyek az indikálni kívánt fémionnal a nem koordinált formájuktól eltérő színű komplexet képeznek - “fémindikátorok”. - A fémion-indikátor komplex (MI) stabilitása elég nagy ahhoz, hogy kis fémion-koncentrációt is jelezzen, de kisebb, mint a fémion-mérőoldat komplex (ML) stabilitása (lgKML - lgKMI > 4). Így az ekvivalenciapontig a mérőoldat teljesen kiszorítja az indikátort a fémkomplexéből, és a szabad indikátor színe látszik. Az ilyen indikátor nem fogyaszt mérőoldatot! - Az indikátorok színe sav-bázis sajátságaik miatt a pH-tól is függ. Emiatt a pH helyes megválasztásával színváltásuk kontrasztosabbá tehető - “pufferolás”.

  34. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás indikátorok pl. eriokrómfekete T pKs1 = 6,3; pKs2 = 11,55 Színe: pH < 6: piros pH ~ 7-11: kék pH > 12: narancsvörös Fémionok: Cd2+, Co2+, Mn2+, Zn2+, Mg2+ pH ~ 10 Színátcsapás: borvörös  kék Példák további komplexometriás indikátorokra: metiltimolkék, xilenolnarancs, murexid, pirokatechin-ibolya, tiron, szulfoszalicilsav, stb.

  35. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria Komplexometriás indikátorok ZnI+L=ZnL+I piros kék c(NH3) = 0,1 mol/dm3 c(NH3) = 0,01 mol/dm3

  36. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexképződési reakciók szelektívvé tétele Szelektív reakciók az anyagoknak csak körülhatárolt számával mennek végbe a kísérőanyagoktól függetlenül. 1. A pH változtatásával: A nagyobb stabilitású komplexek savasabb pH-n is mérhetők (lgK’ még elég nagy), amikor a kisebb stabilitásúak már nem titrálhatók a komplexképző mérőoldattal. Pl. Bi3+-ionok és +2 oxidációs álalpotú fémionok meghatározása egymás mellett. 2. Maszkírozással: A maszkírozni kívánt fémiont a tirtálószernél stabilisabb komplexbe visszük és a többi fémiont mérjük. Pl. Al3+ ionok tironnal, F--dal, vagy 3d átmenetifém-ionok CN--dal. A cianokomplexek “demaszkírozása” formaldehiddel történhet: [Cd(CN)4]2- + 4H+ + 4HCHO  Cd2+ + 4HOCH2CN

  37. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexképződési reakciók szelektívvé tétele Szelektív reakciók az anyagoknak csak körülhatárolt számával mennek végbe a kísérőanyagoktól függetlenül. 3. Oxidációs állapot megváltoztatásával: Változó oxidációs számú fémionok titrálószerrel alkotott komplexének stabilitása az oxidációs állapottal változtatható. Pl. Bi3+ és Fe3+ egymás melletti titrálása (Fe3+ redukciója aszkorbinsavval Fe2+-vé.) 4. Csapadékképződési reakcióval: a zavaró fémiont specifikuslecsapószerel eltávolítjuk. Pl. Ba2+ ionok SO42--ionokkal, Mg2+ ionok OH--ionokkal szelektíven eltávolíthatók. 5. Lassú ligandumcsere esetén a reakciósebességek különbözőségét kihasználva: pl. kinetikailag inert Cr3+, Co3+ komplexek mellett más labilis fémionok meghatározhatók.

  38. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexometria gyakorlata Mérőoldat: EDTA, CDTA dinátrium sója (0,02 M) (pontos hatóérték megállapítása: Pb(NO3)2 -tal, vagy HCl ban oldott fémcinkkel) pH beállítása pufferekkel: pH ~ 12: NaOH pH ~ 10: NH3/NH4+ pH ~ 6: urotropin Indikátorok: poralakban, KNO3-tal (inert só hígítás) eldörzsölve Segédkomplexképzők: pl. tartarát ion, ammónia,

  39. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexometria gyakorlata 1. Közvetlen titrálások: pl. Ca2+: pH ~ 12, murexid, v. metiltimolkék indikátor Ca2+ + Mg2+ egymás mellett: pH ~ 12, murexid mellett csak a Ca2+ mérhető. A Mg2+-ot hidroxokomplex-képződési egyensúlya és a murexid alkalmatlansága miatt nem mérjük. Átsavanyítás, majd pH~10-re állítás után eriokrómfekete T mellett a Mg2+ mérhető. Ca2+ + Mg2+ együtt(vízkeménység): pH~10 NH3/NH4+ puffer, eriokrómfekete T mellett 2. Visszaméréses titrálások: A komplexképződés lassú, nincs megfelelő indikátor, pl. Al3+: (lgKAlEDTA = 16,1), visszamérés Zn2+-vel (lgKZnEDTA = 16,5) A visszamérő komplex stabilitása ne legyen nagyobb a mérendőnél.

  40. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexometria gyakorlata 3. Kiszorításos titrálások: Nincs megfelelő indikátor, ill. a képződő ML komplex stabilitása kicsi, pl. Kis mennyiségű Ca2+: MgEDTA feleslegben Mg2+ mérhető eriokrómfekete T indikátorral Ag+: Nem képez kelátot EDTA-val 2Ag+ + [Ni(CN)4]2- 2 [Ag(CN)2]- + Ni2+ A Ni2+ már mérhető EDTA-val. 4. Közvetett titrálások: A meghatározandó anyag nem képez komplexet, pl. SO42-: fölös mennyiségű Ba2+-mal leválasztjuk, a Ba2+ felesleget komplexometriásan visszamérjük EDTA-val

  41. Komplexképződési egyensúlyok analitikai alkalmazása - Komplexometria A komplexometria gyakorlata 5. Összetett titrálások: komponensek meghatározása egymás mellett, pl. Ca2+ és Mg2+ egymás mellett: lásd előbb Cu2+ és Zn2+ egymás mellett: a két fémion együtt mérhető pH ~ 10 körül murexid indikátor mellett. Ha a Cu2+-t tiocianát (rodanid) jelenlétében aszkorbinsavval redukáljuk, a Cu(I) CuSCN csapadék formájában leválik, így a Zn2+ mérhető metiltimolkék indikátor mellett.

  42. Titrálások egyéb szervetlen komplexképzőkkel • Titrálószer Meghatározandó ion Megjegyzés • Hg(NO3)2 Br-, Cl-, SCN-, CN- Semleges Hg(II) komplexek képződnek, különböző indikátorok • AgNO3 CN- [Ag(CN)2]- képződik, indikátor: I- • NiSO4 CN- [Ni(CN)4]2- képződik, indikátor: AgI • KCN Cu2+, Hg2+, Ni2+ Cianokomplexek képződnek, különböző indikátorok

More Related