1 / 42

Random Variables

Random Variables. an important concept in probability. A random variable , X, is a numerical quantity whose value is determined be a random experiment. Examples Two dice are rolled and X is the sum of the two upward faces.

ryu
Download Presentation

Random Variables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Random Variables an important concept in probability

  2. A random variable , X, is a numerical quantity whose value is determined be a random experiment • Examples • Two dice are rolled and X is the sum of the two upward faces. • A coin is tossed n = 3 times and X is the number of times that a head occurs. • We count the number of earthquakes, X, that occur in the San Francisco region from 2000 A. D, to 2050A. D. • Today the TSX composite index is 11,050.00, X is the value of the index in thirty days

  3. Examples – R.V.’s - continued • A point is selected at random from a square whose sides are of length 1. X is the distance of the point from the lower left hand corner. point X • A chord is selected at random from a circle. X is the length of the chord. chord X

  4. Definition – The probability function, p(x), of a random variable, X. For any random variable, X, and any real number, x, we define where {X = x} = the set of all outcomes (event) with X = x.

  5. Definition – The cumulative distribution function, F(x), of a random variable, X. For any random variable, X, and any real number, x, we define where {X≤x} = the set of all outcomes (event) with X ≤x.

  6. Examples • Two dice are rolled and X is the sum of the two upward faces. S , sample space is shown below with the value of X for each outcome

  7. Graph p(x) x

  8. The cumulative distribution function, F(x) For any random variable, X, and any real number, x, we define where {X≤x} = the set of all outcomes (event) with X ≤x. Note {X≤x} =f if x < 2. Thus F(x) = 0. {X≤x} ={(1,1)} if 2 ≤ x < 3. Thus F(x) = 1/36 {X≤x} ={(1,1) ,(1,2),(1,2)} if 3 ≤ x < 4. Thus F(x) = 3/36

  9. Continuing we find F(x) is a step function

  10. A coin is tossed n = 3 times and X is the number of times that a head occurs. The sample Space S = {HHH (3), HHT (2), HTH (2), THH (2), HTT (1), THT (1), TTH (1), TTT (0)} for each outcome X is shown in brackets

  11. Graphprobability function p(x) x

  12. GraphCumulative distribution function F(x) x

  13. Examples – R.V.’s - continued • A point is selected at random from a square whose sides are of length 1. X is the distance of the point from the lower left hand corner. point X • A chord is selected at random from a circle. X is the length of the chord. chord X

  14. E • Examples – R.V.’s - continued • A point is selected at random from a square whose sides are of length 1. X is the distance of the point from the lower left hand corner. point X S An event, E, is any subset of the square, S. P[E] = (area of E)/(Area of S) = area of E

  15. S The probability function Thus p(x) = 0 for all values of x. The probability function for this example is not very informative

  16. S The Cumulative distribution function

  17. S

  18. The probability density function, f(x), of a continuous random variable Suppose that X is a random variable. Let f(x) denote a function define for -∞ < x < ∞ with the following properties: • f(x) ≥ 0 Then f(x) is called the probability density function of X. The random, X, is called continuous.

  19. Probability density function, f(x)

  20. Cumulative distribution function, F(x)

  21. Thus if X is a continuous random variable with probability density function, f(x) then the cumulative distribution function of X is given by: Also because of the fundamental theorem of calculus.

  22. Example A point is selected at random from a square whose sides are of length 1. X is the distance of the point from the lower left hand corner. point X

  23. Now

  24. Also

  25. Now and

  26. Finally

  27. Graph of f(x)

  28. Summary

  29. Discreterandom variables For a discrete random variable X the probability distribution is described by the probability function, p(x), which has the following properties : This denotes the sum over all values of x between a and b.

  30. Graph: Discrete Random Variable p(x) b a

  31. Continuousrandom variables For a continuous random variable X the probability distribution is described by the probability density function f(x), which has the following properties : • f(x) ≥ 0

  32. Graph: Continuous Random Variableprobability density function, f(x)

  33. A Probability distribution is similar to a distribution ofmass. A Discrete distribution is similar to a pointdistribution ofmass. Positive amounts of mass are put at discrete points. p(x4) p(x2) p(x1) p(x3) x4 x1 x2 x3

  34. A Continuous distribution is similar to a continuousdistribution ofmass. The total mass of 1 is spread over a continuum. The mass assigned to any point is zero but has a non-zero density f(x)

  35. The distribution function F(x) This is defined for any random variable, X. F(x) = P[X ≤ x] Properties • F(-∞) = 0 and F(∞) = 1. Since {X ≤ - ∞} = f and {X ≤ ∞} = S then F(- ∞) = 0 and F(∞) = 1.

  36. F(x) is non-decreasing (i. e. if x1 < x2 then F(x1) ≤F(x2) ) If x1 < x2 then {X ≤ x2} = {X ≤ x1} {x1 < X ≤ x2} Thus P[X ≤ x2] = P[X ≤ x1] + P[x1 < X ≤ x2] or F(x2) = F(x1) + P[x1 < X ≤ x2] Since P[x1 < X ≤ x2] ≥ 0 then F(x2) ≥F(x1). • F(b) – F(a) = P[a < X ≤ b]. If a < bthen using the argument above F(b) = F(a) + P[a < X ≤ b] Thus F(b) – F(a) = P[a < X ≤ b].

  37. p(x) = P[X = x] =F(x) – F(x-) Here • If p(x) = 0 for all x (i.e. X is continuous) then F(x) is continuous. A function F is continuous if One can show that Thus p(x) = 0 implies that

  38. For Discrete Random Variables F(x) is a non-decreasing step function with F(x) p(x)

  39. For Continuous Random Variables Variables F(x) is a non-decreasing continuous function with f(x) slope F(x) x

More Related