Dise o mec nico i
This presentation is the property of its rightful owner.
Sponsored Links
1 / 108

Diseño mecánico I PowerPoint PPT Presentation


  • 197 Views
  • Uploaded on
  • Presentation posted in: General

Diseño mecánico I. Teoría de falla bajo carga estática. OBJETIVOS. Destacar la importancia de la identificación de los modos potenciales de falla en el diseño de ingeniería

Download Presentation

Diseño mecánico I

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Dise o mec nico i

Diseño mecánico I

Teoría de falla bajo carga estática


Objetivos

OBJETIVOS

Destacar la importancia de la identificación de los modos potenciales de falla en el diseño de ingeniería

Estudiar las teorías de falla estática con el propósito de relacionar los estados de esfuerzos complejos con la resistencia del componente, en concordancia con la naturaleza del material


Contenido

Contenido

Objetivos de modulo

Definición de falla

Modos de potenciales de falla

Definición de falla estática

Teorías de falla estática para materiales dúctiles

Teorías de falla estática para materiales frágiles

Resumen comparativo de las teorías de falla estática

Procedimiento para el diseño a carga estáticas

Casos de diseño


Concepto de falla

Concepto de falla

Una falla hace referencia a una condición o situación insatisfactoria de un componente o de una maquina, que le impide alcanzar los niveles de desempeño satisfactorios para los que fue proyectada dentro de su vida útil.

Por lo tanto, no implica necesariamente la rotura; sino que podría ser derivada de deformación excesiva, vibraciones, o ruido excesivos, entre otros.


Modos de fallas en componentes

Modos de fallas en componentes

Fluencia o rotura de un eje de transmisión de potencia en equipos de transporte.

Deformación excesiva de la estructura soporte de un maquina (maquinas herramientas, roladoras, troqueladoras).

Falla por desalineamiento en equipos.

Falla por falta de paralelismo de dos guías de un sistema de movimiento lineal.


Fallas en maquinas y su causa

Fallas en maquinas y su causa

Desempeño insatisfactorio, podría provenir por una mala formulación del problema de diseño.

Rotura, fluencia – mala evaluación de cargas, escogencia inapropiada de la teoría de falla estática y el factor de seguridad o del material.

Deformación excesiva – no previsión de dimensiones que garanticen una rigidez adecuada.

Desgaste – diseño inadecuado de la lubricación, del sistema de refrigeración, del material, de los tratamientos, termomecánicos, etc.

Recalentamiento – no valoración de las ineficiencias y del calor generado.

Vibraciones – falta de rigidez, juegos o tolerancias inapropiadas, total imprevisión de medios adecuados de control.

Fatiga – uso inadecuado de materiales, CFs y FS; así como evaluación impropia de cargas o inconsecuencias de la posibilidad de esta falla.

Corrosión – materiales, medios de control sin previsión, etc.

Inestabilidad – imprevisión, uso de teorías inapropiadas, diseño impropio.

Otros.


Prop sitos de la teor a de falla est tica

Propósitos de la teoría de falla estática

Proporcionan desde el diseño estimar el desempeño esperado de un componente, en unas condiciones complejas de trabajo, a partir de conocer el comportamiento del material de que esta fabricado a carga estática simple.

Permiten estudiar o analizar el comportamiento de un componente que ha fallado trabajando bajo carga estática.


Materiales d ctiles

Materiales dúctiles

Es un material que al ser cargado estáticamente tiende a experimentar deformaciones apreciables y permanentes antes que romperse. Su modo natural de fallo estático es la fluencia. Tienen gran capacidad de deformación y por ende, buen comportamiento a carga dinámica


Materiales fr giles

Materiales frágiles

Es un material que presenta baja capacidad de deformación cuando son solicitados dinámica o estáticamente. Algunos tienen alta resistencia estática y dureza, otros no. Su modo de fallo natural cuando son solicitados es la rotura, se rompen experimentando bajos niveles de deformación. Su fragilidad puede deberse a su composición, micro-estructura y/o a su heterogeneidad.


Falla a torsi n pura

Falla a torsión pura

Dúctil

Frágil


Mapa de las teor as de falla

Mapa de las teorías de falla

Teoría del Esfuerzo Normal Máximo

(TENM)

Materiales Dúctiles

Def>5%

Se divide en

Teoría del Esfuerzo Cortante Máximo

(TECM)

(…)

Precisa

Teoría de la Energía de Distorsión Máxima

+

(TEDM)

Para

Teorías de Falla

Según el Material

Mat. Frágiles Uniformes

(MFU)

Sut=Suc

Teoría del Esfuerzo Normal Máximo

1

(TENM)

Teoría de Mohr Coulomb

(TMC)

Para

Se divide en

Materiales Frágiles

Def≤5%

(…)

2

+

Mat. Frágiles No Uniformes

(MFNU)

Suc>3Sut

Teoría de Mohr Modificada

Precisa

(TMM)


Materiales d ctiles y fr giles

Materiales dúctiles y frágiles

Un material dúctil se deforma considerablemente antes de la fractura. La ductilidad es medida por el % de elongación en el punto de fractura. Materiales con 5% o mas en porcentaje de elongación son considerados dúctiles.

Los materiales frágiles presentan poca deformación

plástica antes de la fractura el esfuerzo de fluencia tiene aproximadamente el mismo valor que el esfuerzo ultimo a tensión. El esfuerzo ultimo a compresión es mucho mayor que el esfuerzo ultimo a compresión.


An lisis de las teor as de falla est tica

Análisis de las teorías de falla estática

  • Teoría para materiales dúctiles

    • Teoría Esfuerzo Normal Máximo

    • Teoría Esfuerzo Cortante Máximo

    • Teoría Energía Distorsión Máxima

  • Teoría de materiales frágiles

    • Teoría Esfuerzo Normal Máximo

    • Teoría de Mohr - Coulomb

    • Teoría de Mohr Modificada


Teor a de la falla est tica para md

Teoría de la falla estática para MD

  • Teoría de esfuerzo normal máximo MD (TENM)

    • Formulada por W.J Rankine (1802 - 1872)

  • Definición: la falla en un elemento de maquina se dará si el estado de esfuerzo del elemento es tal que el valor absoluto de alguno de sus esfuerzos principales es mayor que los esfuerzos principales en un probeta en el momento de la cedencia


Teor a del esfuerzo normal m ximo

Teoría del esfuerzo normal máximo

Esta teoría es inapropiada para materiales dúctiles en el segundo y cuarto cuadrante


Teor a de esfuerzo normal m ximo interpretaci n en el circulo de mohr

Teoría de esfuerzo normal máximo – Interpretación en el circulo de Mohr

Si

Se ha demostrado experimentalmente y en la practica que los elementos fallan, por lo que se fue replanteada


Teor a de esfuerzo normal m ximo interpretaci n

Teoría de esfuerzo normal máximo – Interpretación

<

Se ha comprobado que esta teoría presenta problemas en el segundo y cuarto cuadrantes, es decir cuando los esfuerzos principales presentan signo distinto


Teor a del esfuerzo m ximo tecm

Teoría del esfuerzo máximo (TECM)

<

)

Formulada por C.A. Coulomb, quien también hizo grandes contribuciones al campo de la electricidad.

Definición: la falla en un momento mecánico se da, si el estado de esfuerzo de elemento es tal, que el valor de su esfuerzo cortante máximo es mayor que el esfuerzo cortante máximo en una probeta en tracción en la inminencia de la cedencia.


Teor a del esfuerzo cortante m ximo

Teoría del esfuerzo cortante máximo

El esfuerzo de fluencia de un material es utilizado para diseñar componentes hechos de materiales dúctiles.

Teoría del esfuerzo cortante máximo (Tresca 1886)


Teor a del esfuerzo cortante m ximo1

Teoría del esfuerzo cortante máximo

Interpretación en el circulo de Mohr

Si

Ocurre la falla, se ha demostrado que es ligeramente conservadora en materiales dúctiles


Teor a del esfuerzo cortante m ximo2

Teoría del esfuerzo cortante máximo

Interpretacion en un diagrama

Se ha demostrado que esta teoría es ligeramente conservadora especialmente en el caso de elementos sometidos a estados de esfuerzos tri-axial o en recipientes a presión.

en MD, es fácil demostrarlo si


Teor a del esfuerzo cortante m ximo3

Teoría del esfuerzo cortante máximo

Interpretación en un Diagrama 1 vs 3

para fines de diseño, la relación fallo puede ser modificado para incluir un factor de seguridad (n):


Teor a de la energ a de distorsi n m xima tedm

Teoría de la energía de distorsión máxima (TEDM)

Formulada por Maxwell-Von Mises & H. Hencky, quien también realizo grandes contribuciones al campo de la electricidad.

Definición: La falla en un elemento mecánico se da si el estado de esfuerzo del elemento es tal que el valor de su energía de distorsión máxima es mayor que la de una probeta en el momento de la cedencia.

Caso triaxial

Caso Biaxial


Teor a de la energ a de distorsi n von mises hencky

Teoría de la energía de distorsión (von Mises-Hencky)


Teor a de energ a de distorsi n m xima tedm

Teoría de Energía de distorsión máxima (TEDM)

Interpretación en el circulo de Mohr

La falla en un elemento se da si la energía de distorsión máxima en el elemento es mayor que la de la probeta en el momento de la cedencia, es la menos conservadora TFEst. Para materiales dúctiles


Teor a de la energ a de distorsi n m xima

TEORÍA DE LA ENERGÍA DE DISTORSIÓN MÁXIMA


Teor a de la energ a de distorsi n m xima1

TEORÍA DE LA ENERGÍA DE DISTORSIÓN MÁXIMA

Interpretación en un Diagrama 1 vs 2


Comparaci n de la teor a de falla est tica

Comparación de la teoría de falla estática

Interpretacion en un diagrama

Se ha demostrado que esta teoría es ligeramente menos conservadora que la del cortante máxima

Resumen Comparativo:

  • La TENM solo tiene interés histórico

  • La mas exacta es la TEDM

  • La TECM es segura, solo ligeramente conservadora


Teor a de falla est tica para materiales fr giles

Teoría de falla estática para materiales frágiles

  • Los materiales frágiles se fracturan en lugar de fluir y no presentan deformaciones porcentuales superiores al 5%.

  • Los materiales frágiles se clasifican en dos tipos según su homogeneidad:

    • Uniformes: su naturaleza frágil obedece mas a su estructura cristalina y/o composición química que a discontinuidades; por lo tanto, tienen resistencias a la compresión y a la tensión del mismo orden. Ejemplo: Aceros de herramientas forjados y endurecidos por temple.

    • No uniformes: su naturaleza frágil obedece mas a discontinuidades derivadas de su proceso de producción; por lo tanto, tienen una resistencia mucho menor a la tracción que a la compresión ()>3. Ejemplo: Fundición gris, materiales cerámicos, y otros materiales colados o aglomerados. Por esta razón el plano de falla en tracción es normal a la carga y en compresión falla por deslizamiento.


Teor a de falla est tica mf

Teoría de falla estática (MF)

  • Teoría de falla para MF. Las teorías de falla para materiales frágiles no tienen una formulación teórica son de origen totalmente experimental o empírico. Según su orden cronológico son:

    • Teoría del esfuerzo normal máximo (TENM).

    • Teoría de Coulomb – Mohr (MFU)

    • Teoría de Mohr modificada (MFNU)


Teor a de coulomb mohr

Teoría de Coulomb - Mohr

Es un intento de extender la TECM a los materiales frágiles.

Describe mejor el comportamiento de los materiales frágiles uniformes. En dicho caso, las áreas de seguridad estarían definidas por un pentágono regular y un rectángulo horizontal en el circulo de Mohr


Dise o mec nico i

Esta teoría es una modificación de la teoría de la esfuerzo normal máxima en la que la envolvente de falla se construye conectando las esquinas opuestas de los cuadrantes I y III

El resultado es una envoltura de falla hexagonal.

Cuentas similares a la teoría de la tensión cortante máxima, sino también para las propiedades de los materiales desiguales de material frágil


Teor a de mohr

Teoría de Mohr

la teoría predice que un material se producirá un falla si el esfuerzo es un esta en el sobre que es tangente a los círculos de Mohr correspondientes a los tres de:

uniaxial tensión de rotura a tracción

uniaxial estrés último en compresión, y

cizalla pura


Teor a de mohr modificada

Teoría de Mohr modificada

Describe mejor el comportamiento de los MFNU, por que tiene en cuenta su diferencia marcada entre las resistencias a tracción y compresión, es la menos conservadora de las teorías de falla para materiales frágiles con excepción de la TENM

Corrige las deficiencias de la teoría de Mohr en el II y IV para los MFNU, por que considera la gran diferencia entre las resistencias en tracción y comprensión


Teor as de falla est tica para materiales fr giles

Teorías de falla estática para materiales frágiles


Teor a de mohr modificada1

Teoría de Mohr modificada

esta teoría es una modificación de la teoría de Coulomb-Mohr y es la teoría preferida para materiales frágiles


Materiales fr giles1

Materiales frágiles

Diseño del tercer cuadrante

Ecuación III cuadrante

Ecuaciones Diseño primer cuadrante

Ecuaciones de diseño cuarto cuadrante

Ecuación IV cuadrante (Segundo cuadrante)

Mohr – Cuadrante (TMC)

Mohr modificada (TMM)


Deducci n sus

Deducción Sus


Sus de ensayos

Sus de ensayos

Relación entre el esfuerzo cortante y esfuerzo de tracción

Ultimate Tensile Strength = Su

Ultimate Shear Strength = Ssu

Tensile Yield Strength = Syp

Shear yield point = Ssyp

Nota: Las relaciones siguientes son muy aproximados para usar sólo como una regla de cálculo pulgar si no hay otra fuente de información está disponible ...


Resumen teor a de la falla est tica

Resumen: Teoría de la falla estática


Resumen

Resumen


Seguridad en el dise o de m quinas y estructuras

Seguridad en el diseño de máquinas y estructuras

  • Para garantizar la seguridad en diseño se utilizan dos enfoques prácticos:

    • El empleo de factores de seguridad

    • El empleo de esfuerzos admisibles

  • Factor de seguridad: parámetro introducido en el diseño para considerar las incertidumbres en el diseño sobre los materiales, cargas, fabricación, ensamble, operación y consecuencias de un fallo, entre otros, con el fin de asegurar un margen de seguridad

  • Puede ser empleado como reductor de la resistencia o amplificador de las cargas de trabajo

  • Esfuerzo admisible: Nivel máximo que pueden tomar los esfuerzos de trabajo, por debajo de la resistencia, para cubrir incertidumbres de cargas, material, … y lograr un diseño seguro


Dise o mec nico i

FUNCTION & CONSUMER

REQUIREMENTS

COMPONENT

DESIGN

MANUFACTURING

PROCESSES

MATERIAL

PROPERTIES

Fig. Factors should be considered in component design


Dise o mec nico i

PROPERTIES OF

STOCK

MATERIAL

BEHAVIOR OF

MATERIAL IN THE

COMPONENT

GEOMETRY &

EXTERNAL

FORCES

EFFECT OF

FABRICATION

METHOD

Fig Factors should be considered in anticipating

the behavior of material in the component


Factor de seguridad

FACTOR DE SEGURIDAD

Es una relación de dos cantidades que tienen las mismas unidades, por lo tanto carecerá de unidades.

Es un factor que tiene en cuenta la incertidumbre existente por diversos factores no controlables.


Esfuerzo admisible

Esfuerzo admisible

El esfuerzo admisible ordinariamente es establecido por códigos de diseño y es igual a:

En el diseño estructural se emplea el enfoque de esfuerzos admisibles (ASD)


Factor de seguridad fs

Factor de Seguridad (FS)

  • El factor de seguridad se suele especificar en un código o norma de diseño, tales como:

    • Instituto Americano de Construcción en Acero (AISC) ​​- edificios de acero y puentes.

    • Sociedad Americana de Ingenieros Mecánicos (ASME) - recipientes a presión, calderas, pozos.

    • Instituto Americano del Concreto (ACI).

    • Asociación Nacional de Productos Forestales (NFPA) - estructuras de madera.

    • Asociación del Aluminio (AA) - edificios y puentes de aluminio.

  • Códigos suelen especificar un factor de seguridad mínimo.

  • Responsabilidad del diseñador para determinar si un código o norma aplicable. Los códigos se especifican a menudo por la ley. (BOCA, UBC, etc.)


Factor de seguridad1

Factor de seguridad

  • Factores que afectan el factor de seguridad:

    • Material de base fuerte:

      • Materiales frágiles - usan la fuerza máxima.

      • Materiales dúctiles - usan límite elástico.

    • Manera o de carga:

      • Estático - aplicada lentamente; permanece aplicado o se elimina con poca frecuencia.

      • Repetida - fallo por fatiga puede ocurrir a tensiones inferiores a fallo de la carga estática.

      • Impacto - altos esfuerzos iniciales se desarrollan.

  • Posible uso indebido - diseñador debe considerar cualquier uso razonablemente previsible y mal uso de los productos.

  • Complejidad del análisis de tensión - la tensión real en una parte no siempre se conoce.

  • Medio ambiente - temperatura, el clima, la radiación, químicos, etc


Factor de seguridad2

FACTOR DE SEGURIDAD

La selección de un valor apropiado se basa principalmente en 5 factores

  • Grado de incertidumbre de la carga

  • Grado de incertidumbre en las propiedades del material

  • Incertidumbre del entorno de aplicación

  • Consecuencias de la falla, seguridad humana y economía

  • Costo por proporcionar un factor de seguridad elevado.


Selecci n del factor de seguridad

SELECCIÓN DEL FACTOR DE SEGURIDAD


Selecci n del factor de seguridad1

SELECCIÓN DEL FACTOR DE SEGURIDAD

Para materiales Dúctiles

Para Materiales Frágiles


Factor de seguridad carga est tica

FACTOR DE SEGURIDAD CARGA ESTÁTICA

El factor de seguridad para carga estática se calcula de la siguiente manera:


Margen de seguridad

Margen de seguridad

Indica la fracción de capacidad real de solicitación disponible hasta la falla, o la reserva de capacidad de solicitación frente a la solicitación nominal o de diseño


Factor de seguridad determin stico versus estad stico

Factor de seguridad determinístico Versus estadístico


Algunos comentarios

Algunos comentarios

Tomado de Ulman


Distribuci n t pica de las propiedades de los materiales

Distribución típica de las propiedades de los materiales


  • Login