1 / 36

Classification of Materials

Classification of Materials. Metals. Ceramics. Polymers. Composites. Metals Iron and Steels Aluminum and Alloys Copper and Alloys Nickel and Alloys Titanium and Alloys Ceramics and Glasses Alumina Magnesia Silica Silicon Carbide Silicon Nitride Cement and Concrete. Polymers PE

rusti
Download Presentation

Classification of Materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Classification of Materials Metals Ceramics Polymers Composites

  2. Metals Iron and Steels Aluminum and Alloys Copper and Alloys Nickel and Alloys Titanium and Alloys Ceramics and Glasses Alumina Magnesia Silica Silicon Carbide Silicon Nitride Cement and Concrete Polymers PE PMMA Nylon (PA) PS PU PVC PET PEEK EP NR Composites GFRP CFRP Classes of Materials

  3. Classes of Property

  4. Metals • Metals are typically split into ferrous (iron containing) and non-ferrous • Most widely used metals are alloys except for aluminum and precious metals • Metals are in general are good thermal and electrical conductors. Many metals are relatively strong and ductile at room temperature, and many maintain good strength even at high temperature.

  5. Iron Iron was the third of the prehistoric materials ages (stone, bronze, iron). Iron began to be used once furnaces could be made hot enough to melt iron. Iron quickly became the metal of choice because of its abundance in the earth’s crust. Iron however has two major problems: 1) Corrosion 2) Brittleness These problems are partially overcome by alloying iron to make steel

  6. Steel Steel is an alloy consisting mostly of iron, with a carbon content between 0.02% and 1.7 or 2.04% by weight (C:1000–10,8.67Fe), depending on grade. Carbon is the most cost-effective alloying material for iron, but various other alloying elements are used such as manganese and tungsten.[1] Carbon and other elements act as a hardening agent, preventing dislocations in the iron atom crystal lattice from sliding past one another. Varying the amount of alloying elements and form of their presence in the steel (solute elements, precipitated phase) controls qualities such as the hardness, ductility, and tensile strength of the resulting steel. Steel with increased carbon content can be made harder and stronger than iron, but is also more brittle. The maximum solubility of carbon in iron (in austenite region) is 2.14% by weight, occurring at 1149 °C; higher concentrations of carbon or lower temperatures will produce cementite. Alloys with higher carbon content than this are known as cast iron because of their lower melting point.[1]

  7. Steel

  8. Aluminum (Aluminium) • Aluminium or aluminum is a silvery and ductile member of the poor metal group of chemical elements. It has the symbol Al; its atomic number is 13. • Aluminium is found primarily in bauxiteore and is remarkable for its ability to resist corrosion (due to the phenomenon of passivation) and its light weight. Structural components made from aluminium and its alloys are vital to the aerospace industry and very important in other areas of transportation and building. Although aluminium is the most abundant metallic element in Earth's crust (believed to be 7.5% to 8.1%), it is very rare in its free form, occurring in oxygen-deficient environments such as volcanic mud, and it was once considered a precious metal more valuable than gold. Napoleon III, Emperor of France, is reputed to have given a banquet where the most honoured guests were given aluminium utensils, while the other guests had to make do with gold ones. 20th century metallurgists developed improved processes for extraction.

  9. Aluminum

  10. SuperAlloys • A superalloy, or high-performance alloy, is an alloy able to withstand extreme temperatures that would destroy conventional metals like steel and aluminum. Superalloys exhibit excellent mechanical strength and creep resistance at high temperatures, good surface stability, and corrosion and oxidation resistance. Superalloys typically have an austeniticface-centered cubic crystal structure. A superalloy's base alloying element is usually nickel, cobalt, or nickel-iron. Superalloy development has relied heavily on both chemical and process innovations and has been driven primarily by the aerospace and power industries. Typical applications are in the aerospace industry, eg. for turbine blades for jet engines. • Examples of superalloys are Hastelloy, Inconel, Haynes alloys, Incoloy, MP98T, TMS alloys, and CMSX single crystal alloys.

  11. Variety of ceramic applications • Furnace linings, heat sinks, capacitors, fuel cells, magnets (hard and soft), superconductors, windows, optical fibers, nuclear fuel, artificial hip joints, cutting tools, turbine blades, bearings

  12. What is a Ceramic? • Solid compounds formed by heat or heat and pressure that contain • At least one metal and one non-metal or one non-metal elemental solid (NMES) [MgO, Al2O3, YBa2Cu3O7] • At least two NMES [SiC] • At least two NMES and a non-metal

  13. My name is Bond….. • In ceramics bonding is a mixture of ionic and covalent • If ionic bonding dominates crystal structures occur that are typically based on FCC and HCP • If covalent bonding dominates rings and tetrahedral units are often seen

  14. Ceramics: crystalline and glassy Zinc blende (ZnS) structure Continuous random network oxide glass

  15. CH2CH2 n CHCH2 n CH3 CHCH2 n COO(CH2)2O CO n Repeat units of some common polymers • Poly(ethylene) • Poly(propylene) • Poly(styrene) • Poly(ethylene-terephtalate)

  16. Conformation of Polymers Amorphous thermoplastic Semi-crystalline thermoplastic Crosslinked thermoset

  17. Variety of polymer applications • Packaging materials, building and construction, consumer products, electrical equipment, furniture, adhesives, inks, coatings, optical films, polarizers, photoresists, conducting polymers, latex paint, fabrics/textiles, dielectric materials (capacitors), light emitting diodes.

  18. Plastics use in BMW 5 Series

  19. Elastomers • Entropy springs • Lightly crosslinked • Typically non-linear elastic (a) (b) (c)

  20. ABS The nitrile groups from neighbouring chains, being polar, attract each other and bind the chains together, making ABS stronger than pure polystyrene. The styrene gives the plastic a shiny, impervious surface. The butadiene, a rubbery substance, provides resilience even at low temperatures. ABS can be used between −25 and 60 °C. Production of 1 kg of ABS requires the equivalent of about 2 kg of oil for raw materials and energy.

  21. ABS is used where weight, strength, surface finish and impact resistance are required.

  22. Polycarbonate Although polycarbonate has high impact-resistance, it has low scratch-resistance and so a hard coating is applied to polycarbonate eye-wear lenses. The characteristics of polycarbonate are quite like those of polymethyl methacrylate (PMMA; acrylic), but polycarbonate is stronger and more expensive. This polymer is highly transparent to visible light and has better light transmission characteristics than many kinds of glass. CR-39 is a specific polycarbonate material — although it is usually referred to as CR-39 plastic — with good optical and mechanical properties, frequently used for eyeglass lenses.

  23. PC Examples

  24. Polyethylene Polyethylene is classified into several different categories based mostly on its density and branching. The mechanical properties of PE depend significantly on variables such as the extent and type of branching, the crystal structure, and the molecular weight. Ultra high molecular weight polyethylene (UHMWPE) Ultra low molecular weight polyethylene (ULMWPE - PE-WAX) High molecular weight polyethylene (HMWPE) High density polyethylene (HDPE) High density cross-linked polyethylene (HDXLPE) Cross-linked polyethylene (PEX) Medium density polyethylene (MDPE) Low density polyethylene (LDPE) Linear low density polyethylene (LLDPE) Very low density polyethylene (VLDPE Polyethylene is one of the most widely used polymers because of its cost and versatility.

  25. Spectra® fiber is one of the world’s strongest and lightest fibers. A bright white polyethylene, it is, pound-for-pound, ten times stronger than steel, more durable than polyester and has a specific strength that is 40 percent greater than aramid fiber.     Spectra® fiber is made from ultra-high molecular weight polyethylene that is used in a patented gel-spinning process. Polyethylene is a remarkably durable plastic, and scientists at Spectra Technologies have captured the tremendous natural strength in the molecular backbone of this everyday plastic to create one of the world’s strongest and lightest fibers. The gel-spinning process and subsequent drawing steps allow Spectra® fiber to have a much higher melting temperature (150°C or 300°F) than standard polyethylene.With outstanding toughness and extraordinary visco-elactic properties, Spectra® fiber can withstand high-load strain-rate velocities. Light enough to float, it also exhibits high resistance to chemicals, water, and ultraviolet light. It has excellent vibration damping, flex fatigue and internal fiber-friction characteristics, and Spectra® fiber’s low dielectric constant makes it virtually transparent to radar.Spectra® fiber is used in numerous high-performance applications, including police and military ballistic-resistant vests, helmets and armored vehicles, as well as sailcloth, fishing lines, marine cordage, lifting slings, and cut-resistant gloves and apparel. Honeywell also converts Spectra® fiber into the Spectra Shield® family of specialty composites for armor and other applications.

  26. Polypropylene Polypropylene is often used as a stronger alternative to polyethylene.

  27. Synthetic Rubber Based on Butadiene. Cross-linking is needed to create entropy spring.

  28. Composite Materials Polymer matrix composite (PMC) Metal matrix composite (MMC) Ceramic matrix composite (CMC) Carbon fiber reinforced epoxy crossply laminate Silicon carbide particulate reinforced aluminum Silicon carbide monofilament reinforced glass ceramic After D. Hull and T. W. Clyne, “An introduction to composite materials”, 2nd Edition, Cambridge University Press, Cambridge, (1996)

  29. Review • Describe the subject of materials science and engineering.

  30. Review • Cite the primary classifications of solid materials.

  31. Review • Give distinctive features of each group of materials. • Metals • Polymers • Ceramics • Composites

  32. Review • Cite one material from each group. • Give some applications of different types of materials.

More Related