Vernam cipher project preliminaries
This presentation is the property of its rightful owner.
Sponsored Links
1 / 29

Vernam Cipher Project Preliminaries PowerPoint PPT Presentation


  • 114 Views
  • Uploaded on
  • Presentation posted in: General

Vernam Cipher Project Preliminaries. CSC112 March 14, 2011 Oskars J. Rieksts Computer Science Department Kutztown University. Early/Simple Examples. Steganography Caesar cipher Substitution cipher Transposition cipher Vigenere cipher Vernam cipher. Steganography.

Download Presentation

Vernam Cipher Project Preliminaries

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Vernam cipher project preliminaries

Vernam CipherProject Preliminaries

CSC112

March 14, 2011

Oskars J. Rieksts

Computer Science Department

Kutztown University


Early simple examples

Early/Simple Examples

  • Steganography

  • Caesar cipher

  • Substitution cipher

  • Transposition cipher

  • Vigenere cipher

  • Vernam cipher

Kutztown University


Steganography

Steganography

  • Merriam-Webster: The art or practice of concealing a message, image, or file within another message, image, or file

    • from Greek

      • steganos = covered

      • grafo = write

  • Histiaeus – tyrant of Miletus

    • shaved head of most trusted slave

    • tattooed a message

    • hair grew back covering message

  • Advantage – does not draw attention to

    • itself

    • messenger

    • recipient

  • Often combined with cryptography

Kutztown University


Steganography example

Steganography Example

You may have seen the TV show – In Plain Sight –which is based entirely on the federal witness protection program. The show is about people who have testified or will be testifying soon as witnesses in criminal cases but whose lives are in danger as a result. For their protection they are given new identities and are moved to a new community. Ergo they are all hidden “in plain sight”. And if you think this would not work, according to the U.S. Marshalls extant website, no program participant who follows security guidelines has ever been harmed while under the active protection of the Marshals Service.

Kutztown University


Caesar cipher

Caesar Cipher

  • Example of a shift cipher

    • Encryption – forward shift by 3

    • Decryption – backward shift by 3

  • Shift ciphers

    • Private key

    • Symmetric key

    • Key = shift amount

    • Keyspace = 25

  • Plain text – IHAVEASECRET

  • Cipher text – LKDYHDVHFUHW

Kutztown University


Caesar cipher example

Caesar Cipher – Example

L KDYH D GUHDP WKDW RQH GDB WKLV QDWLRQ ZLOO ULVH XS DQG OLYH RXW WKH WUXH PHDQLQJ RI LWV FUHHG: "ZH KROG WKHVH WUXWKV WR EH VHOI-HYLGHQW: WKDW DOO PHQ DUH FUHDWHG HTXDO."

L KDYH D GUHDP WKDW RQH GDB RQ WKH UHG KLOOV RI JHRUJLD WKH VRQV RI IRUPHU VODYHV DQG WKH VRQV RI IRUPHU VODYH RZQHUV ZLOO EH DEOH WR VLW GRZQ WRJHWKHU DW WKH WDEOH RI EURWKHUKRRG.

L KDYH D GUHDP WKDW RQH GDB HYHQ WKH VWDWH RI PLVVLVVLSSL, D VWDWH VZHOWHULQJ ZLWK WKH KHDW RI LQMXVWLFH, VZHOWHULQJ ZLWK WKH KHDW RI RSSUHVVLRQ, ZLOO EH WUDQVIRUPHG LQWR DQ RDVLV RI IUHHGRP DQG MXVWLFH.

L KDYH D GUHDP WKDW PB IRXU OLWWOH FKLOGUHQ ZLOO RQH GDB OLYH LQ D QDWLRQ ZKHUH WKHB ZLOO QRW EH MXGJHG EB WKH FRORU RI WKHLU VNLQ EXW EB WKH FRQWHQW RI WKHLU FKDUDFWHU.

L KDYH D GUHDP WRGDB.

Kutztown University


Substitution cipher

Substitution Cipher

  • Randomly generated substitution

  • Example

    • A  F

    • B  K

    • C  D

    • D  J

    • etc.

  • Characteristics

    • Private & symmetric key

    • Monoalphabetic

    • Key = alphabet of substitutions

    • Keyspace = 26!

Kutztown University


Substitution cipher analysis

Substitution Cipher – Analysis

  • Keyspace = 26! = 403291461126605635584000000 = 4.03 x 1026

  • But other factors make it insecure

    • Letter frequency

    • N-grams

    • Strong elimination coefficient

    • With patience, can be decoded by hand

  • Plain text – BOOKKEEPINGROCKS

  • Cipher text – JXXTTZZDOYBEXATU

Kutztown University


Substitution cipher example

Substitution Cipher – Example

HPFAIFJZIFYTPFTUVIJFBTPHWVFTHUVGHXXZHWIEMFVJXHAIUETTPITZEIYIFVHVNUCHTWDZIIJGIPUXJTPIWITZETPWTUKIWIXCIAHJIVTTPFTFXXYIVFZIDZIFTIJIOEFXHPFAIFJZIFYTPFTUVIJFBUVTPIZIJPHXXWUCNIUZNHFTPIWUVWUCCUZYIZWXFAIWFVJTPIWUVWUCCUZYIZWXFAIUGVIZWGHXXKIFKXITUWHTJUGVTUNITPIZFTTPITFKXIUCKZUTPIZPUUJHPFAIFJZIFYTPFTUVIJFBIAIVTPIWTFTIUCYHWWHWWHMMHFWTFTIWGIXTIZHVNGHTPTPIPIFTUCHVREWTHDIWGIXTIZHVNGHTPTPIPIFTUCUMMZIWWHUVGHXXKITZFVWCUZYIJHVTUFVUFWHWUCCZIIJUYFVJREWTHDIHPFAIFJZIFYTPFTYBCUEZXHTTXIDPHXJZIVGHXXUVIJFBXHAIHVFVFTHUVGPIZITPIBGHXXVUTKIREJNIJKBTPIDUXUZUCTPIHZWSHVKETKBTPIDUVTIVTUCTPIHZDPFZFDTIZHPFAIFJZIFYTUJFBHPFAIFJZIFYTPFTUVIJFBJUGVHVFXFKFYFGHTPHTWAHDHUEWZFDHWTWGHTPHTWNUAIZVUZPFAHVNPHWXHMWJZHMMHVNGHTPTPIGUZJWUCHVTIZMUWHTHUVFVJVEXXHCHDFTHUVUVIJFBZHNPTTPIZIHVFXFKFYFXHTTXIKXFDSKUBWFVJKXFDSNHZXWGHXXKIFKXITURUHVPFVJWGHTPXHTTXIGPHTIKUBWFVJGPHTINHZXWFWWHWTIZWFVJKZUTPIZWHPFAIFJZIFYTUJFBHPFAIFJZIFYTPFTU

Kutztown University


Transposition cipher

Transposition Cipher

  • Generate permutation of n objects

  • Transpose letters

  • Permutation of 0 through 7

    • 6 – 3 – 7 – 1 – 4 – 8 – 5 – 2

  • Yields value transposition

    1  6

    2  3

    3  7

    4  1

    5  4

    6  8

    7  5

    8  2

Kutztown University


Transposition cipher example

Transposition Cipher – Example

  • Cipher text

    TYTSNHOAGTGERLUSHATEUAGNTIHVLBEAURRYTHHAOHUUCGLGOATHYTNSUSGHTGREGNHLATUEEATAIHLVBEOTLUAHHNERDWTAANRODESUHIEVNETAAMINYNFENNOTORTSTIHFLAEAHAINSNTDEHBGAEVSYTREHEENFIHMNOIARSEPWDEEEEAUSRFPEALSYIBMMSAAIYTROINBNSYEOKNMECCOOLUEDRYADMECRSAOEAECSNEHEWFNTLHONRDISBAEYFOUOURTSSSPSTEOLFDHIFEELWEOHTIRETDHIWREAEIASNVVABKLRIEYMSHNEEEGANIRONPECLHFITNUFAAOIRNGHCRBKOTAEHEUCKRGNNLSDEIAIMNTAGKSSMICELSOOTOEFDLNTGHIIENNNIDMNNAAABSOYTETNNDEWOIRYOWWNHLSLDIEAGYNECSHOCMTNETOSHIMTIIEGNHLTOHFNETRINMSCBLUHLOSOWWSYOBSWULLWEATSRTWTOHDOEKLSNBLDRIARHEITMIGSBIEETRMTNHTGOAIEIAMNDREAGBIAOSNSFTYLEIOONTNGHTIOAIEDTIRESRWAYVAMDEBTFIALEAONNGRENSDTEHIONRCDLWOIANDRSWWUNRTCCHOALSHLRWIGDAEIPNAYMNOSOAETHRTEUSTALUGEGNGIALHVEATRBTTYHAHUCGULHORNRACDLIACRMCMUAOCHORYNOPCRONYNOO

Kutztown University


Vigenere cipher

Vigenere Cipher

  • Polyalphabetic substitution

  • Use n randomly generated substitutions

    • 1st letter is encoded by 1st substitution alphabet

    • 2nd letter is encoded by 2nd substitution alphabet

    • . . .

    • nth letter is encoded by nth substitution alphabet

    • n+1st letter is encoded by 1st substitution alphabet

    • etc.

Kutztown University


Vigenere simple example

Vigenere – Simple Example

  • Key = 3752

  • Successive letters are shifted by 3, 7, 5, 2

  • Plain text – BOOKKEEPINGROCKS

  • Cipher text – EVTMNLJRLULTRJPU

  • Eliminates double letters

  • Scatters N-grams

Kutztown University


Vigenere cipher1

Vigenere Cipher

  • Advantages

    • Creates confusion

    • Same letter can be encoded n different ways

    • Pretty much eliminates n-grams

    • Keyspace > 26!

Kutztown University


Vigenere cipher2

Vigenere Cipher

  • le chiffre indéchiffrable

  • Named for Blaise de Vigenère

  • Invented by Giovan Battista Bellaso ca. 1550

  • Broken by

    • Charles Babbage in 1854 (unpublished)

    • Major Friedrich Kasiski in 1863

      • Prussian infantry office

Kutztown University


Vigenere cipher example

Vigenere Cipher – Example

T KRCS L GILOX WYHH ZQV KOJ WYPG YDKPCY ZZSZ CLJL IA DEK ZTYV VIE WYL HCXV TSLQZUU ZI ZAG NUVLR: "HH YVZO WYLGP WIBHSV KV PP VVST-PYZKSYW: KOOE DCS APQ RYS NUVHHPG VXILO."

Z OOGH R KFPDD AVLW FUS ODP VB EKV YSO KZSZD RW NSZUXPO EKV ZCYV FM TZUDLF DORCSD DEK HSH JVBD RW MCCPVY GWDML CHQVYG HLCS PP DSSS ER JPH ORNU HZJVAVPU RA HSH KHPWH FM PCRKOSCKFVR.

T KRCS L GILOX WYHH ZQV KOJ HMLB EKV ZHLWV VT XLJZWDVZWDT, D JAOEH JDSWWVYWYJ NPHS WYL VPDK VT TQABGELTL, GHHCASCLEN KTWY AVP KVHH ZI FWDCHJZWZQ, NPZW EV AFLQJMCCPVK WYWF HB ZDJPG ZI WYSPGFT OYG ABGELTL.

W SDML O OUVHA EKRA AJ IFBF WLKAZP FYPZOUVU KTOC VBP GRF ZTYV PB L QRAWZQ NOSCH KOSJ ZZSZ YRK IS UXUNSO EP AVP FFSCC RW AVPLI ZYTQ SBH MB KOS NREASYW FM HSHZY QSDIHQEHI.

P VLYV H RCHRT HZGRF.

W SDML O OUVHA EKRA CYH UHM, ORNU WY DCHPLPR, DWEK ZAG GLTPCFV IHQTVKZ, KTWY PHD JFCSCQFY VLYZUU SLJ SWAV UYWASZUU HLKO HSH NVFOV FM WYWVYDZVZAWZQ RUR YXCSWQLTHHTRE; VBP GRF FTJYA HSHIL WY DCHPLPR, SWEWCL PWDTR PZBJ HBO ECHQV JZYZD ZZSZ MH RIZP WF QCTQ YHBOV NPHS OZAHWH NOWEH SVMD DEK KSLKL UTUCZ OD VZZHPUJ HBO EIVHSHIZ.

W SDML O OUVHA ERUHM.

T KRCS L GILOX WYHH ZQV KOJ HMLFJ YRSZPB JOOWO SL SIDCASO, HMLFJ KZSZ LQU TCFQKHWY VYHZW EV TOOH

Kutztown University


Vigenere cipher example analysis

Vigenere Cipher – Example Analysis

TKRCSLGILOXWYHHZQVKOJWYPGYDKPCYZZSZCLJLIADEKZTYVVI

EWYLHCXVTSLQZUUZIZAGNUVLRHHYVZOWYLGPWIBHSVKVPPVVST

PYZKSYWKOOEDCSAPQRYSNUVHHPGVXILOZOOGHRKFPDDAVLWFUS

ODPVBEKVYSOKZSZDRWNSZUXPOEKVZCYVFMTZUDLFDORCSDDEKH

SHJVBDRWMCCPVYGWDMLCHQVYGHLCSPPDSSSERJPHORNUHZJVAV

PURAHSHKHPWHFMPCRKOSCKFVRTKRCSLGILOXWYHHZQVKOJHMLB

EKVZHLWVVTXLJZWDVZWDTDJAOEHJDSWWVYWYJNPHSWYLVPDKVT

TQABGELTLGHHCASCLENKTWYAVPKVHHZIFWDCHJZWZQNPZWEVAF

LQJMCCPVKWYWFHBZDJPGZIWYSPGFTOYGABGELTLWSDMLOOUVHA

EKRAAJIFBFWLKAZPFYPZOUVUKTOCVBPGRFZTYVPBLQRAWZQNOS

CHKOSJZZSZYRKISUXUNSOEPAVPFFSCCRWAVPLIZYTQSBHMBKOS

NREASYWFMHSHZYQSDIHQEHIPVLYVHRCHRTHZGRFWSDMLOOUVHA

EKRACYHUHMORNUWYDCHPLPRDWEKZAGGLTPCFVIHQTVKZKTWYPH

DJFCSCQFYVLYZUUSLJSWAVUYWASZUUHLKOHSHNVFOVFMWYWVYD

ZVZAWZQRURYXCSWQLTHHTREVBPGRFFTJYAHSHILWYDCHPLPRSW

EWCLPWDTRPZBJHBOECHQVJZYZDZZSZMHRIZPWFQCTQYHBOVNPH

SOZAHWHNOWEHSVMDDEKKSLKLUTUCZODVZZHPUJHBOEIVHSHIZW

SDMLOOUVHAERUHMTKRCSLGILOXWYHHZQVKOJHMLFJYRSZPBJOO

WOSLSIDCASOHMLFJKZSZLQUTCFQKHWYVYHZWEVTOOHCVKEKVYC

FJYWZLFVZKTOCISXDULDWDZUOYGKOSNUFVYPGGSONHJDWWOSLA

LGVZHCDZNVEDEKHSHXSCCBFMHSHCVFOVYHZWEVYSGHRSSODEKO

Kutztown University


Vigenere cipher example analysis1

Vigenere Cipher – Example Analysis

TKRCSLGILO

XWYHHZQVKO

JWYPGYDKPC

YZZSZCLJLI

ADEKZTYVVI

EWYLHCXVTS

LQZUUZIZAG

NUVLRHHYVZ

OWYLGPWIBH

SVKVPPVVST

PYZKSYWKOO

EDCSAPQRYS

NUVHHPGVXI

LOZOOGHRKF

PDDAVLWFUS

ODPVBEKVYS

OKZSZDRWNS

ZUXPOEKVZC

YVFMTZUDLF

DORCSDDEKH

SHJVBDRWMC

CPVYGWDMLC

HQVYGHLCSP

PDSSSERJPH

ORNUHZJVAV

PURAHSHKHP

WHFMPCRKOS

CKFVRTKRCS

LGILOXWYHH

ZQVKOJHMLB

EKVZHLWVVT

XLJZWDVZWD

TDJAOEHJDS

WWVYWYJNPH

SWYLVPDKVT

TQABGELTLG

Kutztown University


Vigenere cipher example analysis2

Vigenere Cipher – Example Analysis

HHCASCLENK

TWYAVPKVHH

ZIFWDCHJZW

ZQNPZWEVAF

LQJMCCPVKW

YWFHBZDJPG

ZIWYSPGFTO

YGABGELTLW

SDMLOOUVHA

EKRAAJIFBF

WLKAZPFYPZ

OUVUKTOCVB

PGRFZTYVPB

LQRAWZQNOS

CHKOSJZZSZ

YRKISUXUNS

OEPAVPFFSC

CRWAVPLIZY

TQSBHMBKOS

NREASYWFMH

SHZYQSDIHQ

EHIPVLYVHR

CHRTHZGRFW

SDMLOOUVHA

Kutztown University


Deciphering vigenere

Deciphering Vigenere

  • Determine the number of alphabets

    • Compute distances between matching sequences

    • Compute GCD of distances

  • Treat cipher text as n separate texts

  • For each separate text & each of 25 possible shifts

    • Compute Index of Coincidence

    • based on frequencies found in cipher text

    • using table of frequencies of letters in English

  • Index of Coincidence formula

    • fee = S {relFreqTab(k, ciphLet) * charFreq(ciphLet)}

Kutztown University


Frequency table english

Frequency Table – English

A 0.08; B 0.015; C 0.03; D 0.04; E 0.13;

F 0.02; G 0.015; H 0.06; I 0.065; J 0.005

K 0.005; L 0.035; M 0.03; N 0.07; O 0.08

P 0.02; Q 0.002; R 0.065; S 0.06; T 0.09

U 0.03; V 0.01; W 0.015; X 0.005; Y 0.02

Z 0.002

Kutztown University


Vigenere final step

Vigenere – Final Step

  • Produce possible plain texts

    • using combination of

    • highest ranking fee table values

  • Choose best plain text

  • This step can be automated

    • Rate each possible plain text

    • using n-gram information

    • or list of 5 letter words in English

Kutztown University


Vernam cipher

Vernam Cipher

  • Gilbert SandfordVernam – inventor

    • Also known as one-time pad

    • Invented ca. 1919

  • Proven unbreakable by Claude Shannon

    • Communication Theory of Secrecy Systems

    • 1949

  • Unbreakable if and only if

    • Key is same length as plain text

    • Key is never re-used

Kutztown University


Vernam cipher1

Vernam Cipher

  • Basic operation – bitwise XOR

  • XOR table

    • 0 xor 0 = 0

    • 0 xor 1 = 1

    • 1 xor 0 = 1

    • 1 xor 1 = 0

  • Plain text is represented as bit stream

  • Key is random bit stream of same length

  • Cipher text is produced via bitwise XOR of plain bit stream and key bit stream.

Kutztown University


Vernam cipher example

Vernam Cipher – Example

  • Plain text :: Grade = A – Great!

  • Plain text in ASCII

    • 71 114 97 100 101 32 61 32 65 32 45 32 71 114 101 97 116 33

  • Plain text as bit stream

    01000111 01110010 01100001 01100100 01100101 00100000 00111101 00100000 01000110 00100000 10010110 00100000 01010011 01101111 01110010 01110010 01111001 00100001

Kutztown University


Vernam cipher example1

Vernam Cipher – Example

  • Key as bit stream

    11000001 01110000 11011110 10111001 01100001 10001000 01101100 11111010 00110011

    01001110 01111001 00011110 00001000 10010001 10100100 01000000 10000000 01000010

  • Cipher text as bit stream

    10000110 00000010 10111111 11011101 00000100 10101000 01010001 11011010 01110010

    01101110 01010100 00111110 01001111 11100011 11000001 00100001 11110100 01100011

Kutztown University


Vernam cipher why unbreakable

Vernam Cipher – Why Unbreakable

  • Try attack by exhaustive search

  • Among possible keys

    11000001 01110000 11011110 10111001 01100001 10001000 01101100 11111010 00110100 01001110 01111001 00011110 00011100 10001100 10110011 01010011 10001101 01000010

  • Produces this recovered plain text:

  • Grade = F – Sorry!

Kutztown University


Vernam cipher why unbreakable1

Vernam Cipher – Why Unbreakable

  • Exhaustive search will produce every possible combination of 18 characters.

  • And there is no way to distinguish between them

  • Among the possible recovered texts:

    • Tickle me Elmo now

    • Jabberwocky Rocks!

    • Attack tomorrow am

    • Attack tomorrow pm

    • Grade = C++ & Java

Kutztown University


Vernam cipher why look elsewhere

Vernam Cipher – Why Look Elsewhere?

  • Key distribution problem

    • Every sender/recipient must have same pad

    • N sender recipient pairs require O(N2) pads

    • Pad distribution is security risk

  • Key coordination problem

    • Sheets on pad must match exactly

    • Messages must arrive in order sent

  • Key generation problem

    • High quality random numbers hard to generate

  • Bottom line – has some limited use

Kutztown University


  • Login