1 / 40

TYPES OF PLATE BOUNDARIES 1. Convergent 2. Divergent 3. Transform

Plate tectonics. TYPES OF PLATE BOUNDARIES 1. Convergent 2. Divergent 3. Transform. TYPES OF PLATE BOUNDARIES. 1. Convergent 2. Divergent 3. Transform. PLATE BOUNDARIES. Divergent Plates move apart and new crust is formed Heat from below rises

roy
Download Presentation

TYPES OF PLATE BOUNDARIES 1. Convergent 2. Divergent 3. Transform

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plate tectonics TYPES OF PLATE BOUNDARIES 1. Convergent 2. Divergent 3. Transform

  2. TYPES OF PLATE BOUNDARIES 1. Convergent 2. Divergent 3. Transform

  3. PLATE BOUNDARIES Divergent • Plates move apart and new crust is formed • Heat from below rises • Under ridges, underlying rock melts, comes to surface and creates new crust • Mid-ocean ridges are long chains of volcanoes • Locations of shallow earthquakes

  4. PLATE BOUNDARIES Divergent Sea-floor spreading (i.e. Atlantic ocean) at Mid-Ocean Ridges

  5. PLATE BOUNDARIES Divergent On Continents: Continental rifting (i.e. African and Arabian plates to form Red Sea) Animation 1. sea floor spreading

  6. PLATE BOUNDARIES Divergent On Continents: Continental rifting (i.e. African and Arabian plates to form Red Sea)

  7. PLATE BOUNDARIES Divergent On Continents: Continental rifting (i.e. African and Arabian plates to form Red Sea)

  8. PLATE BOUNDARIES Divergent Age of Ocean floor increases away from divergent boundary

  9. PLATE BOUNDARIES Transform Plates move past each other (i.e. San Andreas fault) Ocean floor transform faults Evidence shallow earthquakes no volcanoes Geodetic rates across faults

  10. PLATE BOUNDARIES

  11. PLATE BOUNDARIES Transform Plates move past each other (i.e. San Andreas fault) -shallow earthquakes -no volcanoes

  12. PLATE BOUNDARIES Convergent Plates move toward each other -shallow, intermediate and deep earthquakes For example off the coast of Washington

  13. PLATE BOUNDARIES Convergent a. Ocean & Continent (Juan de Fuca & N America) Ocean crust more dense compared to continental crust dives under continents Deep trenches created where the plates dive under continents Large earthquakes Volcanoes over the subducting slab on the overriding plate

  14. Pacific-North America plate boundary 1) Convergent boundary in PNW 2) Divergent boundary between Juan de Fuca & Pacific plates 3) Transform boundary in California 4) Divergent boundary between Baja California and mainland Mexico

  15. PLATE BOUNDARIES Convergent b. Ocean & Ocean (off the coast of the Aleutian Islands in Alaska) -denser plate subducts -deep trench -volcanoes created on overlying plate = island arcs

  16. PLATE BOUNDARIES Convergent b. Ocean & Ocean (off the coast of the Aleutian Islands in Alaska) -denser plate subducts -deep trench -volcanoes created on overlying plate = island arcs

  17. PLATE BOUNDARIES Convergent c. Continent & Continent— Thick and low density so neither subducts Collide into each other and create mountains Indian Plate collides into Eurasian Plate = Himalayas,

  18. PLATE BOUNDARIES Convergent c. Continent & Continent— -Both quite thick and low density so neither subducts -They colide into each other and create mountains

  19. TYPES OF PLATE BOUNDARIES 3 plate boundaries Divergent Transform Convergent continent-ocean ocean-ocean continent-continent

  20. Need name, date and class. Neat handwriting Question of the week: Name the three types of plate boundaries.

  21. The interior of the Earth The Earth’s crust The crust is relatively light & brittle. Most earthquakes occur within the crust.

  22. The interior of the Earth • Continental crust • 1) Composed of mostly granitic rocks (high Si rocks) • 2) These rocks are rich in quartz & feldspar • 3) Continental rocks are relatively light & buoyant.

  23. The interior of the Earth • Oceanic crust • Composed of mostly basaltic rocks • These rocks are rich in feldspar & pyroxene • Oceanic rocks are heavier and less buoyant than crustal rocks.

  24. The interior of the Earth • Mantle • Located beneath the crust • Dense silicate rocks • More iron, magnesium, and calcium than the crust • Hotter and denser because temperature and pressure inside the Earth increase with depth • Solid on and strong on short- time scales • Convecting on long time- scales

  25. The interior of the Earth Earth’s core The Earth's core consists of two parts: 1) 2,200 km-thick liquid outer core and 2) 1,250 km-thick solid inner core. As the Earth rotates, the liquid outer core spins, creating the Earth's magnetic field.

  26. Summary Compositional layering Core: high density, iron and nickel. Mantle: medium density (3.3 g/cm3, iron and magnesium plus silicon and oxygen-based rocks Crust: a) denser oceanic crust (3.0 g/cm3 b) less dense continental crust (2.7 g/cm3) Contains silicon and oxygen-based rocks

  27. Physical layering Defined by physical properties or rheology. The increase in temperature and pressure with depth affects the material physical properties The mechanical behavior of earth material may behave like: 1) brittle solid or 2) deform like putty or 3) melt to become a liquid.

  28. Physical layering 1. Inner Core (core) radius 1216 km solid 2. Outer Core (core) 2270 km liquid 3. Lower Mantle (mantle) 2240 km rigid layer 4. Asthenosphere (upper mantle) 660 km soft, weak layer (silly putty) top is actually slightly melted, Asthenosphere is mechanically detached from the lithosphere

  29. Physical layering 5. Lithosphere Crust and uppermost mantle ~100 km thick, ranges from a few km up to ~400 km Thicker under continents Thinner under oceans, very thin at mid-ocean ridges Rigid layer, not connected below so can move.

More Related