1 / 54

Workshop on Tau-Charm at High Luminosity La Biodola, Isola d’Elba, May 27 – 31, 2013

This workshop discusses the key technical features and potential physics performance of the PANDA spectrometer at the FAIR facility. It focuses on particle identification, baryon/antibaryon production, EM processes, strangeness physics, and meson spectroscopy.

Download Presentation

Workshop on Tau-Charm at High Luminosity La Biodola, Isola d’Elba, May 27 – 31, 2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Workshop on Tau-Charm at High Luminosity La Biodola , Isola d’Elba, May 27 – 31, 2013 PANDA @ FAIR Marco Maggiora Dipartimento di Fisica and INFN - Torino, Italy

  2. The future FAIR facility Key Technical Features • Cooled beams • Rapidly cycling superconducting magnets Primary Beams FacilityforAntiproton and IonResearch • 1012/s; 1.5 GeV/u; 238U28+ • Factor 100-1000 present in intensity • 2(4)x1013/s 30 GeVprotons • 1010/s 238U73+upto 25 (- 35) GeV/u Secondary Beams • Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in • intensity over present • Antiprotons 3 (0) - 30 GeV Storage and Cooler Rings • Radioactive beams • e – A collider • 1011 stored and cooled 0.8 - 14.5 GeV antiprotons

  3. HESR - High Energy Storage Ring • Production rate 2x107/sec • Pbeam = 1 - 15 GeV/c • Nstored= 5x1010 p • Internal Target _ 2.3 ≤ √s ≤ 5.5 GeV High resolution mode Internal TargetDetector • dp/p ~ 10-5(electron cooling) • Lumin. = 1031 cm-2 s-1 p p High luminosity mode From RESR • Lumin. = 2 x 1032 cm-2 s-1 • dp/p ~ 10-4(stochastic cooling)

  4. PANDA spectrometer _ pp: Pellet or Cluster target pA: wire target _ _ P Forward Spectrometer Dipole magnet for forward tracks (2T.m) ~ 12m Target Spectrometer Solenoid magnet for high pt tracks: Superconducting coil & iron return yoke (B=2T) Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex] PANDA Magnet TDR http://www-panda.gsi.de/archive/public/P_magn_TDR.pdf

  5. PANDA spectrometer: Tracking MVD STT Silicon MicroVertex Central Tracker GEM Detectors Drift Chambers Physics Performance Report for PANDA arXiv:0903.3905 PANDA STT TDR arXiv:1205.5441v1 [physics.ins-det]

  6. PANDA spectrometer: Particle IDentification Muon Detectors Forward RICH Barrel DIRC Barrel TOF Endcap DIRC Endcap TOF Plastic Scintillators Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex]

  7. PANDA spectrometer: Particle IDentification PbWO4 EMC Forward Shashlyk EMC 10 000 crystals Physics Performance Report for PANDA arXiv:0903.3905 [hep-ex] PANDA EMC TDR arXiv:0810.1216v1 [physics.ins-det]

  8. Particle IDentification with PANDA EMC MVD DIRC • PANDA PID Requirements: • particle identification essential for PANDA • momentum range 200 MeV/c – 10 GeV/c • Extreme high rates 2·107 Hz • good particle separation (K-e) • different detectors needed for PID STT Physics Performance Report for PANDA arXiv:0903.3905

  9. PANDA scientific program p Momentum [GeV/c] 0 2 4 6 8 10 12 15 ΛΛ ΣΣ ΞΞ ΩΩ DD ΛcΛc ΣcΣc ΞcΞc ΩcΩc DsDs qqqq ccqq nng,ssg ccg nng,ssg ccg ggg,gg ggg light qq π,ρ,ω,f2,K,K* cc J/ψ, ηc, χcJ 1 2 3 4 5 6 Mass [GeV/c2] • baryon/antybaryon production • EM processes: • TL form factos • Drell-Yan and TMDS • GPDs • strangeness physics • hyperatoms • S=-2 nuclear system • Ξ−nuclei • ΛΛhypernuclei • meson spectroscopy • light mesons • charmonium • exotics states • glueballs • hybrids • molecules/multiquarks • open charm • charm in nuclei

  10. p + p → e- + e+ events generation L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days Generator: |GM| = 22.5 (1 + q2 / 0.71)-2 (1 + q2 / 3.6)-1  = |GE|/|GM| lowersensitivity @ higher q2 M. Sudol et al., EPJ A44 (2010) 373 E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291

  11. PANDA scenario: expected results L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 PS170: G. Bardin et al., NPB 411 (1994) 3 pQCDinspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) 045501 R=|GE|/|GM| BaBAR PS170 PANDA sim Individualdeterminationof |GE| and |GM| up to q2 14 (GeV/c)2 !! M. Sudol et al., EPJ A44 (2010) 373

  12. PANDA scenario: expected results L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Absolute accessible up to q2 28 (GeV/c)2 M. Sudol et al., EPJ A44 (2010) 373

  13. PANDA scenario: asymptotic behaviours L = 2  10 32cm-2 s-1 → 2 fb-1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindelöftheorem: E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, 15 - 19 Jun 2009, pp.447, arXiv:0907.4442v1 [nucl-th]

  14. TMD: κT-dependent Parton Distributions Twist-2 PDFs: Courtesy of Aram Kotzinian

  15. TMD: κT-dependent Parton Distributions Leading-twist correlator depends on five more distribution functions:

  16. TMD: κT-dependent Parton Distributions Twist-2 PDFs Transversity Sivers Boer-Mulders

  17. Drell-Yan Di-Lepton Production — Why Drell Yan? Asymmetries depend on PD only (SIDIS→convolution with QFF) Why ? Each valence quark can contribuite to the diagram Scaling: Full x1,x2 range . 3 planes: plane to polarisation vectors plane plane plenty of (single) spin effects Kinematics Fermilab E866 800 GeV/c

  18. Drell-Yan Asymmetries — Di-Lepton Rest Frame • NLO pQCD: λ 1,   0, υ 0 • Lam-Tung sum rule: 1- λ = 2ν • reflects the spin-½ nature of the quarks • insensitive top QCD-corrections • Experimental data [1]: υ 30 % • [1]J.S.Conway et al., Phys. Rev. D39 (1989) 92.

  19. Remarkable and unexpectedviolationofLam-Tungrule λ, μ, ν measured in π N→μ+μ – X NA10 @ CERN υinvolves transverse spin effects at leading twist [2] If unpolarised DY σ is kept differential on kT , cos2φ contribution to angular distribution provide: [2]D. Boer et al., Phys. Rev. D60 (1999) 014012. [1]NA10 coll., Z. Phys. C37 (1988) 545

  20. Drell-Yan Asymmetries — Boer-Mulders T-odd Chiral-odd TMD [1] • ν > 0 → valence h 1  has same sign in π and N • ν(π-W→μ+μ-X) ~ h 1 (π)valence x h 1 (p)valence • ν(pd→μ+μ-X) ~ h 1 (p)valence x h 1 (p)sea • ν > 0 → valence and sea h 1  has same sign, • but sea h 1  should be significantly smaller [1] L. Zhu et al, PRL 99 (2007) 082301; [12 D. Boer, Phys. Rew. D60 (1999) 014012.

  21. Transverse Single Spin Asymmetries: correlation functions All these effects may may lead to Single Spin Asymmetries (SSA): # of partons in polarized proton depends on partons’ polarisation in unpolarized proton depends on PDF X X fragmentation of polarised quark depends on FF Hadrons’ polarisation coming from unpolarised quarks depends on X X

  22. Transverse Single Spin Asymmetries in Drell-Yan expected[1] to be small but not negligible for HESR layout on fixed target Test of Universality 0 ≤ qT ≤ 1 GeV/c √s = 14.14 GeV Originates from the Sivers function[1]: [1] Anselmino et al., Phys. Rev. D72, 094007 (2005). [2] J.C. Collins, Phys. Lett. B536 (2002) 43

  23. Experimental Asymmetries @ PANDA — Unpolarised: Single Spin:

  24. Experimental Asymmetries @ PANDA — s ~ 30 GeV2 [1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 [2]Physics Performance Report for PANDA, arXiv: 0903.3905

  25. QCD dynamics The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. _ _ In PANDA pp ΛΛ, ΛΞ, ΛΞ, ΞΞ , ΣΣ, ΩΩ, ΛcΛc, ΣcΣc, ΩcΩc can be produced allowing the study of the dependences on spin observables. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested

  26. Baryon-baryon interaction The knowledge of Baryon-Baryon potential is essential for the understanding of the composition of nuclear matter. Nuclear NN forces are known, YN interaction, thanks to hypernuclear physics, is relatively known, but YY interaction is completely unknown, there are just a few double Λhypernuclear events. NAGARA The fraction of baryons and leptons in neutron star matter arXiv:0801.3791v1 ΛΛ-hypernuclei, -atoms, Ω-atoms allow to have an insight to more complex nuclear systems containing strangeness (neutron stars, hyperon-stars, strange-quark stars, …)

  27. Double Strange Systems (DDS) n p X- p n e- n p p n X- (S=±2) hyperon – antihyperonsystems are fully accessible at PANDA • ΛΛ strong interaction • only possible in double hypernuclei • YY potential: attractive/repulsive? • hyperfragments probability dependence on YY potential One Boson Exchange features ΛΛ ΛΛ: only nonstrange, I =0 meson exchange (ω,η...) • ΛΛ weak interaction: hyperon induced decay: • ΛΛ Λ n: ΓΛn<< Γfree(expected) • ΛΛ  Σ-p:ΓΣp<< Γfree(expected) Exotic hyperatom: Doubly Strange Hypernucleus: Ξ-occupies an atomic level Ξ-occupies a nuclear level Double ΛHypernucleus: 2 Λ‘s replace 2 nucleons in a nucleus • Ξ- -nucleus interaction • Atomic orbits overlap nucleus • Strong interaction and • Coulomb force interplay • Lowest atomic levels are • shifted and broadened • Potential: Coulomb + optical • Ξ-N interaction: • short range interaction • long range interaction • ….. n Λ p Λ p n

  28. A new way for double strange systems • Up to now double strange systems have been produced by K- beams in the reaction: • K- (N, Ξ-) K+ (N- quasi free or bound in nucleus) • S=-2 baryon can be produced via: • reaction = 2mb at 3GeV/c • 700.000Ξ−Ξbar /h Goal: maximize the “stopped Ξ-” with a suitable set-up • Choice of the target: • free protons (hydrogen target) or protons and neutrons in a nucleus(quasi-free reactions) Advantages of nuclear target: a) higher cross section (scaling as ~A2/3) b) X- slowing down in dense (nuclear) matter Disadvantages of nuclear target: c) high background (annihilation) d) high beam consuming (beam losses)

  29. A new way for double strange systems  bar +N  Kbar+ Kbar +p + … [ -production tag] K I Target Ξ p K N Pbar +N- + bar :  = 2 b; pbar (3GeV/c) belowproduction Ξ Elastic scattering in nucleus: strong slowing down (a challenge) slowing down in matter (with decay) MeV II Ta r ge t   - N conversion +  sticking -capture into atomic levels and hyperatomic cascade  Xray Capture into nucleus: Strong and Coulomb forces decay (MWD,NMWD… ) N

  30. ΛΛHypernuclei Status of the art: +0.18 - 0.11 +0.18 - 0.11 • Up to know these systems have been studied in cosmic rays or using kaon-beams: • K−+ p → X− + K+ From X - to Double Hypernuclei • KEK, BNL-AGS, have demonstrated that the systems are produced. • At JPARC with high intensity kaon-beams the goal is to stop 104X−in a nuclear target. At PANDA the same amount of data will be collected, with the possibility to run with different nuclear targets at the same time.

  31. Antiproton power _ e+e-→ Y’ pp→ c1,2 → gc1,2 → gJ/y → ggJ/y → ge+e- → gge+e- CBall E835 100 cc1 1000 _ • pp reactions: CBall ev./2 MeV E 835 ev./pb ECM 3500 3510 3520 MeV pp → c) = 1.2 10-3 Br( Br(e+e-→y) ·Br(y→ ghc) = 2.5 10-5 • e+e- interactions: • - Only 1-- states are formed • Other states only by secondary • decays (moderate mass resolution • related to the detector) • Most states directly formed • (very good mass resolution; p-beam • can be efficiently cooled) _

  32. Spectroscopy with antiprotons Production all JPC available Formation only selected JPC There are two mechanisms to access particular final states:

  33. Spectroscopy with antiprotons p G p p H H _ _ _ p M p p M M Formation only selected JPC There are two mechanisms to access particular final states: Production Even exotic quantum numbers can be reached σ~100 pb

  34. Spectroscopy with antiprotons p p p p G p p H H H H _ _ _ _ _ _ p p p p M p p M M Production Even exotic quantum numbers can be reached σ~100 pb All ordinary quantum numbers can be reached σ~1 μb Formation G

  35. Exotic hadrons -- -+ 1 1 2 10 c c q q c i (qq)(qq) t t Multiquarks o h x g i E l (qq) g Hybrids c i 1 t o x E Glueballs -2 10 0 2000 4000 MeV/ c 2 The QCD spectrumismuchrichthanthatof the naive quark modelalso the gluons can actas hadron components The “exotichadrons” fall in 3 generalcategories: In the light meson spectrum exotic states overlap with conventional states

  36. Exotichadrons -- -+ 1 1 2 10 c c q q c i (qq)(qq) t t Multiquarks o h x g i E l (qq) g Hybrids c i 1 t o x E Glueballs -2 10 0 2000 4000 MeV/ c 2 The QCD spectrumismuchrichthanthatof the naive quark modelalso the gluons can actas hadron components The “exotichadrons” fall in 3 generalcategories: In the cc mesonspectrum the density of statesislower and therefore the overlap

  37. XYZ Mesons B-meson decay Initial State Radiation  X(3872) Belle, Babar, Cleo, CDF, D0 Y(3940) Belle, Babar Y(4140)? CDF Z(4430) Z1(4050) Belle Z2(4250) 1−− states X(4008)? Belle Y(4260) BaBar, Belle,CLEO Y(4350) BaBar, Belle Y(4660) Belle c p Xcc  c b p e− W− B s cc K(*) u,d e+ u,d J/Y X(3915) Belle Z(3930) Belle Y(4350) Belle gg-collisions e+ e+  * Associate production e+e−⟶J/Ψ Xcc Xcc  * C+ J/Ψ e− e− X(3940) Belle X(4160) Belle D(*) e− c c g c D(*)  e+ The B-factory experiments have discovered a large number of candidates for charmonium and charmonium-likemeson states, many of which can not be easily accommodated by theory. State parameters are still largely unknown. Few events collected in 10 years of running PANDA will detect 100 events per day c

  38. XYZ Mesons Without entering into the details of each state some general consideration can be drawn. • masses are barely known; • often widths are just upper limits; • few final states have been studied; • statistics are poor; • quantum number assignment is possible for few states; • some resonances need confirmation… There are problems of compatibility Theory - Experiment Arxiv:09010.3409v2 [hep-th] Quantum numbers assignment become clear only with high statistics, different final states and very precise energy measurements,.

  39. Antiprotonpower Resonancecrosssection • e+e−: typicalmass res. ~ 10 MeV • Fermilab: 240 keV • HESR: ~30 keV Measured rate Beam CM Energy The production rate of a certain final state  is a convolution of the BW cross section andthe beam energy distribution function f(E,E): The resonance mass MR, total width R and product of branching ratios into the initial and final state BinBout can be extracted by measuring the formation rate for that resonance as a function of the cm energy E.

  40. PANDA Physics Performance Report All the details of the PANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv:0903.3905v1

  41. on behalf of the PANDA Collaboration THANK YOU!

  42. The Collaboration AMU Aligarh, Basel, Beijing, BITS Pillani, Bochum, IIT Bombay, Bonn, Brescia, IFIN Bucharest, IIT Chicago, AGH-UST Cracow, JGU Cracow, IFJ PAN Cracow, Cracow UT, Edinburgh, Erlangen, Ferrara, Frankfurt, Gauhati, Genova, Giessen, Glasgow, GSI, FZ Jülich, JINR Dubna, Katowice, KVIGroningen, Lanzhou, Legnaro, LNF, Lund, Mainz, Minsk, ITEP Moscow, MPEI Moscow, TU München, Münster, BARC Mumbai, Northwestern, BINP Novosibirsk, IPN Orsay, Pavia, IHEP Protvino, PNPI St.Petersburg, South Gujarat University, SVNIT Surat, Sadar Patel University, KTH Stockholm, Stockholm, FH Südwestfalen, Suranaree University of Technology, Sydney, Dep. A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, NCBJ Warsaw, TU Warsaw, AAS Wien At present 500 physicists from 63 institutions in 17 countries

  43. Pellet or cluster-jet target 2T Superconducting solenoid for high pt particles 2Tm Dipole for forward tracks

  44. Target system areal density [a.u.] -20 0 20 -10 10 transverse position[mm] N2 H2 • Requirements • Proton Target • 5 x 1015 cm-2formaximumluminosity • Pellet Target • Frozendroplets 20m • also possible: D2, N2, Ne, ... • Status:  5 x 1015 • Cluster Jet Target • Dense gas jet • also D2, N2, Ne, ... • Status:  8 x 1014 Cluster beam after nozzle

  45. Central Tracker Forward Chambers Silicon Microvertex detector

  46. SiliconMicrovertex Detector • Micro Vertex Detector • 4 barrels and 6 disks • Inner layers: hybrid pixels (100x100 µm2) • 140 module, 12M channels • Outer layers: silicon strip detectors • double sided strips • 400 modules, 200k channels • Mixed forward disks • Continuous readout • Requirements • c(D±) 312 mc(Ds±) 147 m • Vertex resolution 50 m

  47. Central Tracker • Design figures: • σrφ~ 150µm , σz~ 1mm • δp/p ~ 1% (with MVD) • Material budget ~ 1% X0 • 2 Alternatives: • Time Projection Chamber • Continuous samplingGEMs readout plane (Ion feedback suppression)Online tracklet finding • Straw Tube Tracker • about 4000 straws • 27 µm thin mylar tubes, 1 cm Ø • Stability by 1 bar overpressure

  48. MuonDetectors Forward RICH Barrel DIRC Barrel TOF Forward TOF Endcap DIRC

  49. PANDA PID requirements PANDA PID Requirements dE/dxof TPC • Particleidentification essential tool • Momentumrange200 MeV/c – 10 GeV/c • Different processesfor PID needed • PID Processes • Čerenkovradiation: p > 1 GeVRadiators: quartz, aerogel, C4F10 • Energyloss: p < 1 GeVGoodaccuracywith TPC, • SttsystemdE/dxunderstudy • Time offlight: needs a startdetector • Electromagneticshowers:EMC for e and γ ForwardToF

  50. DIRC Lens Focussing • PANDA DIRC • Lens focussing • shorter radiator • no water tank • compact pixel readout • (CP-PMTs or APDs) beam

More Related