1 / 9

10.3 Areas of Regular Polygons

10.3 Areas of Regular Polygons. Standard 8.0, 10.0 & 20.0. Finding the area of an equilateral triangle. The area of any triangle with base length b and height h is given by A = ½bh. The following formula for equilateral triangles; however, uses ONLY the side length. A = ¼ s 2.

Download Presentation

10.3 Areas of Regular Polygons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 10.3 Areas of Regular Polygons Standard 8.0, 10.0 & 20.0

  2. Finding the area of an equilateral triangle • The area of any triangle with base length b and height h is given by A = ½bh. The following formula for equilateral triangles; however, uses ONLY the side length.

  3. A = ¼ s2 Theorem 11.3 Area of an equilateral triangle • The area of an equilateral triangle is one fourth the square of the length of the side times A = ¼ s2 s s s

  4. A = ¼ s2 A = ¼ 82 A = ¼ • 64 A = • 16 Ex. 2: Finding the area of an Equilateral Triangle • Find the area of an equilateral triangle with 8 inch sides. Area of an equilateral Triangle Substitute values. Simplify. Multiply ¼ times 64. A = 16 Simplify. Using a calculator, the area is about 27.7 square inches.

  5. The apothem is the height of a triangle between the center and two consecutive vertices of the polygon. More . . . F A H a E G B D C Hexagon ABCDEF with center G, radius GA, and apothem GH

  6. A = Area of 1 triangle • # of triangles = ( ½ • apothem • side length s) • # of sides = ½ • apothem • # of sides • side length s = ½ • apothem • perimeter of a polygon This approach can be used to find the area of any regular polygon. More . . . F A H a E G B D C Hexagon ABCDEF with center G, radius GA, and apothem GH

  7. Theorem 11.4 Area of a Regular Polygon • The area of a regular n-gon with side lengths (s) is half the product of the apothem (a) and the perimeter (P), so A = ½ aP, or A = ½ a • ns. NOTE: In a regular polygon, the length of each side is the same. If this length is (s), and there are (n) sides, then the perimeter P of the polygon is n • s, or P = ns The number of congruent triangles formed will be the same as the number of sides of the polygon.

  8. More . . . • A central angle of a regular polygon is an angle whose vertex is the center and whose sides contain two consecutive vertices of the polygon. You can divide 360° by the number of sides to find the measure of each central angle of the polygon. • 360/n = central angle

  9. A regular pentagon is inscribed in a circle with radius 1 unit. Find the area of the pentagon. Ex. 3: Finding the area of a regular polygon C 1 B D 1 A

More Related