1 / 81

Andrea Vianello S.C. Fisiopatologia Respiratoria Ospedale-Università di Padova

QUANDO VENTILARE? CON COSA VENTILARE?. Andrea Vianello S.C. Fisiopatologia Respiratoria Ospedale-Università di Padova. RESPIRATORY FAILURE. LUNG FAILURE. PUMP FAILURE. GAS EXCHANGE FAILURE. VENTILATORY FAILURE. HYPERCAPNIA. HYPOXEMIA. What’s the point of ventilation?

rosalindr
Download Presentation

Andrea Vianello S.C. Fisiopatologia Respiratoria Ospedale-Università di Padova

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. QUANDO VENTILARE? CON COSA VENTILARE? Andrea Vianello S.C. Fisiopatologia Respiratoria Ospedale-Università di Padova

  2. RESPIRATORY FAILURE LUNG FAILURE PUMP FAILURE GAS EXCHANGE FAILURE VENTILATORY FAILURE HYPERCAPNIA HYPOXEMIA

  3. What’s the point of ventilation? • Deliver O2 to alveoli • Hb binds O2 (small amount dissolved) • CVS transports to tissues to make ATP - do work • Remove CO2 from pulmonary vessels • from tissues - metabolism

  4. Why ventilate?- purposes • To maintain or improve ventilation, & tissue oxygenation. • To decrease the work of breathing & improve patient’s comfort.

  5. When ventilate?- indications • Failure of pulmonary gas exchange • Hypoxaemia: low blood O2 • “Mechanical” failure • Hypercarbia: high blood CO2 • Respiratory muscle fatigue • Need to intubate eg patient unconscious • Others eg • need neuro-muscular paralysis to allow surgery • cardiovascular reasons

  6. Non-InvasiveVentilation “a formofventilatorysupportthatavoidsairwayinvasion” Hill et al Crit Care Med 2007; 35:2402-7

  7. Paziente con riacutizzazione acidotica di BPCO Terapia medica + O2 q.b. per SpO2 89-92%

  8.  VCO2 Airway narrowing & obstruction Airway Inflammation  Frictional WOB Auto- PEEP Shortened muscles curvature  Elastic WOB Gas trapping  muscle strength VT VE VA • PaCO2 • pH • PaO2

  9.  VCO2 usa i farmaci e bene ! Airway narrowing & obstruction Airway Inflammation Steroids  Frictional WOB Abx Auto- PEEP Shortened muscles curvature BDs  Elastic WOB Gas trapping Teophylline  muscle strength VT VE VA • PaCO2 • pH • PaO2

  10. MV  VCO2 usa i farmaci e bene ! Airway narrowing & obstruction Airway Inflammation Steroids  Frictional WOB Abx PEEP Auto- PEEP Shortened muscles curvature BDs  Elastic WOB Gas trapping Teophylline MV  muscle strength VT VE MV VA • PaCO2 • pH • PaO2

  11. Paziente con riacutizzazione acidotica di BPCO Terapia medica + O2 q.b. per SpO2 89-92% Ripetizione di EGA pH < 7.20 pH < 7.30 pH > 7.35 >7.30 pH < 7.35 NIV non indicata

  12. NIV consigliata l’80% dei pazienti migliora comunque con terapia standard Ogni 10 pazienti trattati con NIV si evita 1 ETI; NIV migliora la dispnea >7.30 pH < 7.35 NIV altamente consigliata Senza NIV 1 paziente su 2 necessita di ETI NIV migliora la sopravvivenza pH < 7.30 NIV altamente consigliata 1 paziente su 2 fallisce NIV Tuttavia con NIV migliora outcome ospedaliero e sopravvivenza a 1 anno pH < 7.20

  13. NIV VS TRATTAMENTO STANDARD Keenan S et al

  14. NIV VS TRATTAMENTO STANDARD Keenan S et al

  15. NIV VS TRATTAMENTO STANDARD Keenan S et al

  16. The ICU studies Confirm the feasibility of NIV Confirm the effectiveness of NIV Selected patients / enthusiastic Units Reduced complications - particularly infectious 16% v 48% 1 ,18 v 60% 2 Reduce ICU / Hospital stay 23 v 35 days 1 , 9 v 15 days 2 • 1. Brochard et al NEJM 1995; 333:817-22 2. Girou et al JAMA 2000; 284:2361-7

  17. 2005; 128

  18. 49 pazienti con IRA in BPCO dopo fallimento terapia medica, pH 7.2 • Simili durata di permanenza in ICU, durata VM, complicanze generali, mortalità in ICU, e mortalità in ospedale • con NIV 48% evitano ETI, sopravvivono con permanenza in ICU inferiorevs pazienti VM invasiva (P=0.02) • A 1 anno: NIV inferiore riospedalizzazione (65% vs 100% P=0.016) e minor frequenza di riutilizzo supplemento di ossigeno (0% vs 36%)

  19. Studio caso-controllo: 64 paz. con IRA trattati con NIV pH = 7.18 • 40/64 (62%) fallimento NIV (RR con NIV - 38%) • Simili mortalità in ICU, e mortalità in ospedale; durata di permanenza in ICU e post ICU, ma: • Inferiori complicanze (P=0.01) e probabilità di rimanenere in VM (P=0.056) • Se NIV efficace (24/64 = 38%) migliore sopravvivenza e ridotta permanenza in ICUvs pazienti VM invasiva NIV riduce necessità di ETI e ospedalizzazione, migliora outcome a lungo termine

  20. Definition: What is it? • Mechanical Ventilation =Machine to ventilate lungs = move air in (+ out) • Several ways to..move air in (IPPV vs others) Intermittent Positive Pressure Ventilation

  21. Definition: What is it? • Mechanical Ventilation =Machine to ventilate lungs = move air in (+ out) • Several ways to..move air in (IPPV vs others) Intermittent Positive Pressure Ventilation • Several ways to connect the ventilator to the patient

  22. Several ways to connect the machine to patient • Oro-tracheal Intubation • Tracheostomy • Non-Invasive Ventilation

  23. Normal breath Normal breath inspiration, awake Lung @ FRC= balance Diaphragm contracts -2cm H20 Chest volume Pleural pressure -7cm H20 Alveolar pressure falls Air moves down pressure gradient to fill lungs

  24. La pompa diaframmatica genera Pgarantendo la ventilazione polmonare, regolata da: • Equazione di moto del Sistema Respiratorio: Pmusc = V / C + V’ x R

  25. Normal breath Normal breath expiration, awake -7cm H20 Diaphragm relaxes Pleural / Chest volume  Pleural pressure rises -2cm H20 Alveolar pressure rises Air moves down pressure gradient out of lungs

  26. Ventilator breath Portableventilator ICU ventilator ICU ventilator

  27. Ventilator breath Ventilator breath inspiration Air blown in 0 cm H20  lung pressure Air moves down pressure gradient to fill lungs +5 to+10 cm H20  Pleural pressure

  28. Il ventilatore sostituisce totalmente o parzialmente la pompa muscolare: • Equazione di moto del Sistema Respiratorio: Pappl (+ Pmusc) = V / C + V’ x R

  29. Ventilator breath Ventilator breath expiration Similar to spontaneous…ie passive Ventilator stops blowing air in Pressure gradient Alveolus-trachea Air moves out Down gradient  Lung volume

  30. Practicalities • Ventilator settings: • Pressure vs volume • ‘Assist’ vs ‘Control’ • Trigger sensitivity • PEEP?

  31. Details: Inspiration Pressure or Volume? • Do you push in.. • A gas at a set pressure? = ‘pressure…..’ • A set volume of gas? = ‘volume….’

  32. Details: Inspiration Pressure or Volume? Pressure cm H20 Time Pressure cm H20 Time

  33. Pressure Ventilators • The use of pressure ventilators is increasing in critical care units. • A typical pressure mode delivers a selected gas pressure to the patient early in inspiration, and sustains the pressure throughout the inspiratory phase. • By meeting the patient’s inspiratory flow demand throughout inspiration, patient effort is reduced and comfort increased.

  34. Although pressure is consistent with these modes, volume is not. • Volume will change with changes in resistance or compliance • Therefore, exhaled tidal volume is the variable to monitor closely. • With pressure modes, the pressure level to be delivered is selected, and with some mode options, rate and inspiratory time are preset as well.

  35. Details: Inspiration Pressure or Volume?

  36. Volume Ventilators • The volume ventilator has been historically used in critical care settings • A respiratory rate, inspiratory time, and tidal volume are selected for the mechanical breaths. • The basic principle of this ventilator is that a designated volume of air is delivered with each breath. • Theamount of pressure required to deliver the set volume depends on : - Patient’s lung compliance - Patient–ventilator resistance factors

  37. Peak Inspiratory Pressure (PIP ) must be monitored in volume modes because it varies from breath to breath 30 Peak Inspiratory Pressure P aw Time (s) cmH2O 1 2 3 -10

  38. Details: Pressure vs Volume in the Acute Setting Secretions hypoventilation Vt preserved partial compensation hypoventilation sensitive insensitive Schönhofer ERS Monograph 2001; 16: 259-73, mod

  39. small leak huge leak Details: leak compensation without leakage with leakage Pressure Vol Pressure Vol Pre-set Mehta et al. Eur Respir J 2001; 17: 259-267

  40. Interaction Ventilator Respiratory muscle pump

  41. . . Ventilator Respiratory muscle pump work of breathing spontaneous assisted controlled

  42. Noninvasive mechanical ventilation in acute exacerbation of restrictive thoracic disease Eur Respir Mon 2001; 6:70-73

  43. Pressure Flow Volume Time 4 Phases • Inspiratory triggering • Inspiration • Termination • of inspiration • Expiration Nilsestuen et al. Respir Care 2005; 50:202-232

  44. Details: trigger sensitivity trigger asynchrony insensitive trigger sensitive trigger auto- triggering • trigger sensitivity to low • high level of PSV • hypercapnic encephalopathy • sedation • sleep • intrinsic PEEP (COPD) • tubing obstruction • trigger sensitivity to high • resistance changes • tubing leakage • cardiac oscillation

  45. Trigger poco sensibile: allo sforzo inspiratorio non segue l’atto meccanico del respiratore

  46. Trigger troppo sensibile: l’atto meccanico si innesca spontaneamente

  47. Pao Pes patient 3 patient 1 patient 2

More Related