QPOs
Download
1 / 47

张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing - PowerPoint PPT Presentation


  • 170 Views
  • Uploaded on

QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation. 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing. OUTLINE OF TALK. Introduction of RXTE

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing' - ronnie


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

QPOs,准周期振荡in Black Hole,Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsarsEinstein’s Relativity in Strong Gravitation

张承民, 尹红星

National Astronomical Observatories

Chinese Academy of Sciences, Beijing


Outline of talk
OUTLINE OF TALK

Introduction of RXTE

  • Black Hole (BH) and Neutron Star (NS) in Low Mass X-ray Binary (LMXB)

  • KHz Quasi Periodic Oscillation (QPO)

  • Millisecond accreting-powered X-ray Pulsar

  • Type-I X-ray Burst Oscillation

  • QPOs of NS/BH X-ray Sources

  • Theoretical Mechanisms---Strong Gravity

  • Further Expectation


Binary x ray sources
Binary X-ray Sources

Normal Star + Compact Star

10,000 lyr, 300Hz/450Hz

Micro-quasar, Radio jet

7 solar mass/optical


Qpo frequencies discovered by rxte 1996 2006 reviewed by van der klis 2005 06
QPO frequencies discovered by RXTE 1996—2006, reviewed byvan der Klis 2005, 06

  • NBO, ~5 Hz

  • HBO, ~20-70 Hz

  • Hundred, ~100 Hz

  • kHz, ~1000-Hz

  • Burst oscillation, ~300 Hz

  • Spin frequency, ~300 Hz

  • Low, high QPO, ~0.1 Hz

  • Etc.

QPO: Quasi Periodic Oscillation

准周期振荡


Atoll and z sources lmxb ccd
Atoll and ZSources --- LMXB CCD

~1% Eddington Accretion

~Eddington Accretion

Accretion rate direction


Discovery typical twin khz qpos
Discovery: typical twin KHZ QPOs

Separation ~300 Hz

Typically: Twin KHz QPO

Upper ν2 = 1000 (Hz)

Lower ν1 = 700 (Hz)

18/25 sources

Sco x-1, van der Klis et al 1997


Qpo v s accretion rate relation
QPO v.s. Accretion rate relation

QPO frequency increases with the accretion rate

SCO X-1, Van der Klis, 2005, 06

QPO轮廓随吸积率变宽/低,消失


KHz QPO Data,Atoll sources

最大值Max:νmax=1329 Hz,

van Straaten 2000

min: ~200 Hz

平均值/Distribution of kHz QPOs:QPO (Atoll) ~ QPO(Z)

Zhang et al 2006; 原因?


Khz qpos of z sources
kHz QPOs of Z Sources


Difference of twin khz qpos const beat model by miller lamb psaltis 1998
Difference of twin kHz QPOs = const?Beat model by Miller, Lamb & Psaltis 1998


Saturation of khz qpo frequency
Saturation of kHz QPO frequency ?

4U1820-30, NASA

W. Zhang et al, 1998

Kaaret, et al 1999

Swank 2004; Miller 2004

BH/ISCO: 3 Schwarzschild radius

Innermost stable circular orbit

NS/Surface: star radius, hard surface


Parallel line phenomenon khz qpo luminosity relation
Parallel Line PhenomenonkHz QPO-luminosity relation

Similarity/Homogeneous ?

Among the different sources, same source at the different time


Khz qpo v s count rate
kHz QPO v.s. Count rate

kHz QPO corresponds to the position in CCD,

to the accretion rate Mdot;

QPO ~ Mdot, 1/B

B ~ Mdot, proportional

Cheng & Zhang, 1998/2000

Zhang & Kojima, 2006


Accreting millisecond x ray pulsar sax j1808 4 3658 7 sources
Accreting millisecond X-ray pulsar--- SAX J1808.4-3658 (7 sources)

Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature

4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002


SAXJ 1808.4-3658

Twin kHz QPOs

700 Hz, 500 Hz

Burst/spin: 401 Hz

See, Wijnands 2006

XTE 1807, kHz QPO, 191 Hz,

Linares et al. 2005

F. Zhang et al. 2006

Burst frequency ~ spin frequency ?, 2003


IGR J00291+5934 598.88 Hz, Markwardt 2004, 7 MSP sources


Spectrum of type i x ray burst frequency
Spectrum of Type-I X-ray Burst frequency

4U1702-43, van der Klis 2006; Strohmayer and Bildsten 2003


Type i x ray burst
Type-I X-ray Burst

  • Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998

  • Thermonuclear reaction on accreting NS surface (T/P, spot)

  • Burst rise time: 1 second

  • Burst decay time: 10-100 second

  • Total energy: 1039-40 erg. Eddington luminosity !

4U1728-34, (363 Hz) Strohmayer et al 1996

362.5 Hz --- 363.9 Hz, in 10 second



On the burst frequency
On the burst frequency

  • Burst frequency increases ~ 2 Hz, drift.

  • Decreasing is discovered

  • From hot spot on neutron star

  • kHz QPO separation ~ burst/spin frequency


Burst and spin frequency
Burst and Spin frequency

kHz QPO separation=195 Hz/(spin=401 Hz)

Burst and Spin frequency are similar

X

X

X

11 burst sources, Muno et al 2004

7 X-ray pulsars, Wijnands 2004; Chakrabarty 2004


11 burst sources muno 2004
11 burst sources, Muno 2004


3rd kHz QPO ?

25 kHz QPO 源


Low frequency qpo khz qpo
Low frequency QPO---kHz QPO 关系

Psaltis et al 1998, 1999

Belloni et al 2002; 2005

Low frequency QPO< 100 Hz

FBO/NBO = 6-20 (Hz)

HBO = 15-70 (Hz)

Empirical Relation

νHBO = 50. (Hz)(ν2 /1000Hz)1.9-2.0

νHBO = 42. (Hz) (ν1/500Hz)0.95-1.05

νqpo = 10. (Hz) (ν1/500Hz)

ν1 = 700. (Hz)(ν2 /1000Hz)1.9-2.0


Twin khz qpo relations
Twin kHz QPO relations

ν1 = ~700. (Hz)(ν2 /1000Hz)b

b ~ 1.6 Atoll Source 4U1728

b~ 1.8 Z Source Sco X-1

Zhang et al. 2006




Low-high frequency QPO 关系

Neutron stars

Black holes

White dwarfs, Cvs

Zhang 2005: Model

Warner 2006; Warner & Woudt 2004; Mauche 2002

+ 27 CVs, 5 magnitude orders in QPOs


Black hole high frequency qpos
Black Hole High Frequency QPOs

GRO J1655-40, XTE J1550-564

XTE 1650-5000, 4U1630-47

XTE 1859-226, H 1743-322

GRS 1915+105, 4/7 Sources

Van der Klis 2006

  • HFQPO: 40-450 (Hz)

  • Constant (stable) in frequency Mass/Spin/ Luminosity

  • Pair frequency relation 3:2

  • Frequency-Mass relation: 1/M

  • 7 BH sources, van der Klis 2006

  • Jets like Galactic BHs

    (McClintock & Remillard 2003)

    Different from those of NS’s

Genzel 2003; Auschenbach 2004; GC QPOs, 3:2

νk= (1/2π)(GM/r3)1/2

= (c/2πr) (Rs/2r)1/2

νk (ISCO) = 2.2 (kHz) (M/Mסּ) -1

Magnetosphere-disk instability noise:

mechanism:?

Miller, et al 1998



H 1743-322[10]

240

160

XTE J1650-500[14]

250

(Astro-ph/0408402[8])



Stellar black hole micro quasar
STELLAR Black Hole— those in NS LMXBs Micro-quasar

GRS 1915+105

41:67 Hz, 33 solar mass

10,000 lyr, 300Hz:450Hz=2:3

Microquasar, Radio jet

7 solar mass/optical


Qpo and break frequency
QPO and Break Frequency those in NS LMXBs


Theoretical consideration
Theoretical Consideration those in NS LMXBs

Accretion Flow around NS/BH

Hard surface ?

  • Strong Gravity:

  • Schwarzschild Radius: Rs=2GM/c2

  • Innermost Stable Circular Orbit RIsco= 3Rs

  • Strong Magnetic:

  • 108-9 Gauss (Atoll, Z-sources)

  • Beat Model:

  • Kepler Frequency

  • Difference to Spin frequency


Qpo models
QPO Models those in NS LMXBs

Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature

Abramovicz and cooperators ’ Model

non-linear resonance between modes of accretion disk oscillations

HFQPO: Stella black hole QPO, 3:2 relation

Wang, DX, 2003, positions

Titarchuk and cooperators ’ Model

transition layer formed between a NS surface and the inner edge of a Keplerian disk,

QPO: magnetoacoustic wave (MAW), Keplerian frequency.

Low-high frequency relation 0.08 ratio

Relativistic precession model by Stella & Vietri 1999


Theoretical models
Theoretical Models those in NS LMXBs

What modulate X-ray Flux ?

Why quasi periodic, not periodic ?

Parameters: M/R/Spin, B?--Z/Atoll

Beat Model (HBO),

νHBO = νkepler - νspin

νKepler ≈ r-3/2is the Kepler Frequency of the orbit

νspin Constant, is the spin Frequency of the star

Alpar, M., Shaham, J., 1985, Nature

r ~ 1/Mdot , νHBO ~ Mdot

Beat Model for KHz QPO

ν2 = νkepler

ν1 = νkepler - νspin

∆ν = ν2 - ν1 = νspin

Miller, Lamb, Psaltis 1998; Strohmayer et al 1996

Lamb & Miller 2003

…Constant


X qpo beat
X- those in NS LMXBs 射线源准周期振荡QPO, Beat ?

SAXJ 1808, Wijnands, Nat, 2003

XTEJ 1807, Zhang, F, Qu JL, Zhang CM, Li TP, Chen, W. , 2006

间隔常数?NO!

拍模型预言:间隔常数=自旋

Alpar和Shaham,1985,Nature。

Lamb et al 1985, Nature。

Miller et al 1998, ApJ。


Einstein s prediction perihelion motion of orbit
Einstein’s Prediction: those in NS LMXBs Perihelion Motion of Orbit

Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large


Neutron star orbit

N. Copernicus those in NS LMXBs

Neutron Star Orbit

ISCO Saturation

Einstein’s General Relativity: Perihelion precession

Precession Model for KHz QPO, Stella and Vietri, 1999

ν2 = νkepler

ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2]

∆ν = ν2 - ν1 is not constant


Theoretical model

  • Problems: those in NS LMXBs

  • Vacuum

  • Circular orbit

  • Test particle

  • Predicted 2 M⊙

  • 5. 30 sources, NS mass ~ 1.4 solar mass

Theoretical model

Stella and Vietrie, 1999, Precession model


Lense thirring precession
Lense-Thirring Precession those in NS LMXBs

Zhang, SN et al 1997;

Cui et al 1998:

BH precession ?

L.Stella, M.Vietri, 1998

From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect

Gravity Probe B, Gyroscope experiment, Stanford U, led by F.Everit, 2003

Gravitomagnetism Conf., 2nd Fairbank W., Rome U, organized by R.Ruffini, 1998

Book “Gravitation and Inertia” by Ciufolini and Wheeler, 1995


Problems
Problems those in NS LMXBs ?

  • Vacuum ?

  • Kerr rotation ?

  • Magnetic Field ?

  • Inner Accretion Disk ?

Similarity: common parameter: accretion rate/radius


Alfven wave oscillation MODEL those in NS LMXBs

(in Schwarzschild spacetime):

Zhang 2004; Li & Zhang 2005

Keplerian Orbital frequency resonance

MHD Alfven wave Oscillation in the orbit

ν2 = 1850 (Hz) A X3/2

ν1 = ν2X (1- (1-X)1/2)1/2

A=m1/2/R63/2; X=R/r,

m: Ns mass in solar mass

R6 is NS radius in 10^6 cm


Constrain on Star those in NS LMXBs EOS , mass & radius

Kerr spacetime ?

NSMass in solar mass

NS radius (km)

CN1/CN2: normal neutron matter, CS1/CS2: Strange matter

CPC: core becomes Bose-Einstein condensate of pions


10 rxte
10 those in NS LMXBs 年RXTE探测总结

  • 观测,进展较大,QPO关系明确

  • 理论,进展缓慢,很多模型?

物理实验室

强引力广义相对论验证

中子星结构检验核物理

开普勒运动

近星点进动

LT 进动/引力磁

引力红移

黑洞/Kerr 时空

引力波

光线弯曲

质量

半径

核物态(中子/夸克)

磁场

旋转

吸积流动

QPO机制?

数据处理?

新物理?


References: those in NS LMXBs

1: Remillard, R. A. et al. 1999, ApJ, 522, 397

2: Strohmayer, T. E. 2001, ApJ, 552, L49

3: Remillard, R. A. et al. 1999, ApJ, 517, L127

4: Remillard, R. A. et al. 2002, ApJ, 580, 1030

5: Miller, J. M. et al. 2001, ApJ, 563, 928

6: Strohmayer, T. E. 2001, ApJ, 554, L169

7: Remillard, R. A. 2003, abstract HEAD,7,3003

8: Remillard, R. A. 2002 (astro-ph/0208402)

9: Belloni, T. et al. 2006 (astro-ph/0603210)

10: Homan, J. et al. 2005, ApJ, 623, 383

11: Remillard, R. A. et al. 2006, ApJ, 637, 1002

12: Markwardt, C. 2001, ApSSS, 276,209

13: Klein-Wolt, M. et al. 2004, NuPhS, 132, 381

14: Homan, J. et al. 2003, ApJ, 586, 1262


ad