James L Pinfold     EDS 2009
This presentation is the property of its rightful owner.
Sponsored Links
1 / 17

CDF :: Introduction PowerPoint PPT Presentation


  • 38 Views
  • Uploaded on
  • Presentation posted in: General

CDF Detector. CDF :: Introduction. Muon Chambers. A Roman Pot deployed detector is placed on one side of CDF at at 60m from the IP. (RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1).

Download Presentation

CDF :: Introduction

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Cdf introduction

James L Pinfold EDS 2009


Cdf introduction

CDF Detector

CDF :: Introduction

Muon Chambers

A Roman Pot deployed detector is placed on one side of CDF at at 60m from the IP. (RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1)

Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Central Exclusive Physics

Central state

Proton/antiproton does not break up during interaction

pT ~ 0

> 3 rap-gap

, P, PP

gg

> 3 rap-gap

 ~180o

Proton/antiproton does not break up during interaction

Both protons coherently scattered. Central state fully

specified and measured, unlike “inclusive” production:

Forward tagging of the p’s at the LHC with FP420/ 220m allows full reconstruction of the central state

Mass to ~3 GeV at ISR, ~100 GeV at Tevatron, ~700 GeV at LHC

Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

p

g

g

X

g

p

Exclusive Production Diagrams

Gamma-gamma Photoproduction QCD

Central Exclusive Production

gap

IP

DPE

X

QCD

gap

IP

q-loop

In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons - a gluon dipole.

Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive  Production (1)

  • Trigger (DIFF_CHIC_CMU1.5_PT1.5_TRK):

    • BSC Gap, east & west

    • muon + track (pt > 1.3 GeV/c; |h| < 1.2)

    • 3.0 < M(muon + track) < 4.0 GeVc2

  • The existing sample corresponds to a lumi of 1.48 fb-1

  • Offline cuts

    • No other activity in the events (to an |h| of 7.4)

    • PT(m) > 1.4 GeV/c & |h(m)| < 0.6

    • Cosmic ray cuts (abs (TOF) < 3 ns)

    • Exclusivity cuts (same as for the e+e- paper)

  • STARLIGHT Monte Carlo simulation used (Klein & Nystrand)

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive  Production (2)

Example exclusive m+m- event: Run 199559, Event 13120174

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive  Production (4)

p + p  p +  + p

J

Fit: 2 Gaussians + QED continuum.

Masses 3.09, 3.68 GeV == PDG

Widths 15.8,16.7 MeV=resolution.

QED = generator x acceptance

3 amplitudes floating

402 events

(with no EM shower)

s

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive  Production (5)

IPsm+m-

IPJ+m-

ggm+m- continuum

Good agreement on kinematics with STARLIGHT MC (Klein & Nystrand )

Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

c J/() + (soft) (1)

DPE

QCD

  • Similar selection as  search with additional isolated EM shower req.

  • New ChicMC -Durham

    • Khoze,Martin,Ryskin,Stirling, EPJ C35, 211 (2004), implemented by J. Stirling

Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

c J/() + (soft) (2)

c J/() + (soft)

The ChiC-MC-Durham is a good fit the data

Good fit to  kinematics from c, if there is an EM shower in the event

Introduction +--IPJ/ & (2s)IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Estimating the c Contribution

  • Plot show fit of ET spectrum for events from J/ peak with:

    • EEMT tower > 100 MeV

  • Total number of c events: 68.2 ± 8.3

  • 65.4 c events above the 80 MeV exclusivity cut

  • 4.0± 1.6% c event background to exclusive J/ signal

  • Additional  inefficiency from: Conversions - 7%, Dead regions - 5.0%

  • CHECK - Muon-pair events with an accompanying photon with ET > 80 MeV were from the J/ peak as expected if they are c decays

Introduction  +--IPJ/ & (2s)IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Backgrounds to Exclusive 

  • An important background is undetected proton fragmentation estimated using the LPAIR MC:

    • The proton frag. probability at the pp(p*) vertex is estimated as 17%

    • The proton frag. probability at the pIPp (p*) vertex is estimated as 24%

      • From the ratio of single diffractive frag. to elastic scattering at the Tevatron

    • The probability that all proton fragmentation products have || >7.4 is 14%

    • The probability that decay products may not be detected due to BSC inefficiency is 8%

Introduction  +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive  Production - Results

g

  • This QED cross-section is in principle very well understood

  • The  results agree with the Starlight (Klein & Nystrand) and LPAIR (Vermaseren) Monte Carlos

    • Predicted a cross-section of 2.18 ± 0.01 pb

  • Reminder - the ee results also agreed with the Starlight (Klein & Nystrand) and LPAIR (Vermaseren) Monte Carlos

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive Charmonium - Results

IPJ/and IPs)

  • The J/ results (ds/dy|y=0) agrees with theoretical predictions:

    • V.A. Khoze , A.D. Martin , M.G. RyskinEur.Phys.J.C24:459-468,2002.

    • S.Klein and J.Nystrand, Starlight, Phys. Rev. Lett. 92:142003 (2004).

    • L.Motyka and G.Watt, Phys. Rev. D78:014023 (2008).

    • W.Schafer and A.Szczurek, Phys. Rev. D 76, 094014(2007).

    • V.P.Goncalves and M.V.T.Machado, Eur. Phys. J. C 40, 519 (2005).

  • The (2s) result consistent with the Starlight prediction

  • R = (2s)/(1s) = 0.14 ± 0.05 is in agreement with the HERA value of R = 0.166 ± 0.012 at similar s(p) (H.Jung, Acta. Phys. Polon. Supp.1, 531 (2008))

d/dy|y=0 =

3.0 ± 0.3 nb

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Exclusive c Production - Results

IP + IPcJ/(soft)

Theory

90 nb

  • The  -in theoretical errors - with:

    • T predictionofKhoze, Martin & Ryskin EPJ C19, 447 (2001), Erratum C20 599 (2001) & Khoze , Martin, Ryskin & Stirling, Eur.Phys.J.C35:211-220,2004

    • The calculation of Pasechnik, Szczurek & Teryaev,arXiv:0902.1689[hep-ph].

  • In this analysis it is assumed that the produced c is 0++ (JPC)

    • NB double-diffractive production of exclusive axial vector (1++) & tensor (2++) quarkonium states are strongly suppressed (Khoze, Martin & Ryskin, EPJ C19, 447 (2001)

      • Caveat: the large BR of the c (1++) to J/ means it may contribute to our signal

Introduction  +--IPJ/ & (2s)IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Just Published (19th June 2009)

Principal authors: Albrow, Pinfold & Zhang

Introduction +--IPJ/ & (2s) IP-IPc J/ +  Conclusion

James L Pinfold EDS 2009


Cdf introduction

Final Words

  • Our results agree with to the Durham Group’s theoretical predictions for the observation of these states

  • IMPLICATIONS FOR THE LHC

    • Use ofggm+m- /e+e- as a lumi monitor

    • Study ofggm+m- & -p  J/ m+m- as a calibration for FP420 is underway

    • The process p-pgg/cc/ cb/ j-j are standard candles for the exclusive Higgs

      • Thus, according to Durham Group predictions principle, we should see the CEP Higgs boson at the LHC

    • A proving ground for Central Exclusive Physics that will be exploited by the RP220 /FP420 forward proton spectrometers at the LHC

  • We are understanding that the LHC is a gg, g-p (g-IP) & IP- IP collider

IP

IP

g

LHC

p

p

g

g

IP

Introduction +--IPJ/ & (2s) IP-IPc J/ + Conclusion

James L Pinfold EDS 2009


  • Login