Particle accelerators and detectors
1 / 18

Particle Accelerators and Detectors - PowerPoint PPT Presentation

  • Uploaded on

Particle Accelerators and Detectors. World ’ s Largest ‘ Microscopes ’. Contents. What is a Particle Accelerator? An Early Accelerator Modern Linear and Circular Accelerators Particle Detectors Examples of Accelerators and Detectors Accelerators and Detectors as Giant Microscopes.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about ' Particle Accelerators and Detectors' - robert-page

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Particle accelerators and detectors

Particle Accelerators and Detectors

World’s Largest ‘Microscopes’


  • What is a Particle Accelerator?

  • An Early Accelerator

  • Modern Linear and Circular Accelerators

  • Particle Detectors

  • Examples of Accelerators and Detectors

  • Accelerators and Detectors as Giant Microscopes

What is a particle accelerator
What is a Particle Accelerator?

  • Any device that accelerates charged particles to very high speeds using electric and/or magnetic fields

The picture to the right shows an early particle accelerator from 1937. This accelerator was used in the development of the first atomic bomb.

An early accelerator
An Early Accelerator

  • In 1929, Ernest Lawrence developed the first circular accelerator

  • This cyclotron was only 4 inches in diameter, and contained two D-shaped magnets separated by a small gap

  • An oscillating voltage created an electric field across the small gap, which accelerated the particles as they went around the accelerator

An early accelerator cont
An Early Accelerator, cont.

  • Here is picture of Lawrence’s cyclotron:

Today s accelerators
Today’s Accelerators

  • Modern accelerators fall into two basic categories:

    • Linear Accelerators

    • Circular Accelerators

Linear accelerators
Linear Accelerators

  • In linear accelerators, particles are accelerated in a straight line, often with a target at one to create a collision

  • The size of linear accelerators varies greatly

    • A cathode ray tube is small enough to fit inside of a television

    • Stanford’s linear accelerator is two miles long

Linear accelerator example 1 cathode ray tube
Linear Accelerator – Example 1(Cathode Ray Tube)

  • The cathode ray tube is a linear accelerator found in many TVs, computer monitors, etc.

Linear accelerator example 2 stanford linear accelerator
Linear Accelerator - Example 2(Stanford Linear Accelerator)

Circular accelerators
Circular Accelerators

  • Circular accelerators propel particles along a circular path using electromagnets until the particles reach desired speeds/energies

  • Particles are accelerated in one direction around the accelerator, while anti-particles are accelerated in the opposite direction

Circular accelerators cont
Circular Accelerators, cont.

  • Circular accelerators are able to bring particles up to very high speeds (energies) by allowing each particle to be accelerated for a longer period of time—around the accelerator.

  • The distance around a circular accelerator can be quite large

    • Fermilab’s Tevatron (Near Chicago, USA) - 4 miles (6.44 km)

    • CERN’s LHC (Near Geneva, Switzerland) –16.8 miles (27 km)

Fermilab accelerators
Fermilab Accelerators

  • The protons and anti-protons at Fermilab go through a series of accelerators in order to accelerate them to 1 TeV (just 200 miles per hour slower than the speed of light)

  • At Fermilab, protons are accelerated in one direction around the ring; anti-protons are accelerated in the opposite direction

  • The series of accelerators at Fermilab is illustrated by an animation located at this website (be sure to press “play”):


  • The particle and anti-particle beams are focused and directed at particular sites around the ring in order to collide with one another

  • These collisions are designed to occur within detectors, which are able to analyze the many events (particles created, etc.) that result from the collisions of the particles and anti-particles

Particle detectors
Particle Detectors

  • The large detectors are able to trace and characterize the particles that result from the collisions

  • The picture to the right shows the 5,000-ton CDF Collider Detector at Fermilab

  • 400,000 proton-antiproton collisions occur each second in this detector

Particle detectors cont
Particle Detectors, cont.

  • By analyzing the nature and type of particles resulting from the collisions, scientists are able to learn much about matter at a more fundamental level

Cern accelerators and detectors
CERN Accelerators and Detectors

  • The diagram to the right shows the accelerators and detectors at CERN near Geneva, Switzerland

  • The LHC is the largest circular accelerator at CERN and is to begin operation in 2007

  • CMS and ATLAS are two of the five examples of detectors approved at CERN for the LHC

Fermilab accelerators and detectors
Fermilab Accelerators and Detectors

  • The most powerful accelerator (the Tevatron) in the US is at Fermilab

  • The diagram to the right shows the series of accelerators (including the Main Injector and Tevatron) and detectors (including CDF and DZERO) at Fermilab

Accelerators and detectors as giant microscopes
Accelerators and Detectors as Giant Microscopes

  • Together, particle accelerators and detectors have helped scientists discover very small building blocks of matter

  • For instance, scientists now think that protons within atoms are made up of even smaller particles known as quarks

  • Check out for more information