Space eploration timeline
Download
1 / 21

Space Eploration Timeline - PowerPoint PPT Presentation


  • 55 Views
  • Uploaded on

Space Eploration Timeline. By Ta’shun Richardson. 1900.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Space Eploration Timeline' - rendor


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Space eploration timeline

SpaceEploration Timeline

By Ta’shun Richardson


1900

Although Tsiolkovsky was born more than one hundred years before Sputnik became the first object launched into space, he prepared the way for it and all future space exploration. Tsiolkovsky was a true visionary who theorized many aspects of space travel and rocket propulsion decades ahead of others. Tsiolkovsky also imagined satellites and space stations long before such ideas could actually be implemented


1914

Goddard's Rocket Patents U.S. rocket scientist Robert H. Goddard receives two landmark patents for rockets. The first described a multi-stage rocket and the second described a rocket fueled with gasoline and liquid nitrous oxide. These two patents would become major milestones in the history of rocketry.


1926

By 1926, Goddard had constructed and successfully tested the first rocket using liquid fuel. Indeed, the flight of Goddard’s rocket on March 16, 1926, at Auburn, Massachusetts, was as significant to history as that of the Wright brothers at Kitty Hawk.


1930

The  US Navy’s only attempt to launch a liquid fueled rocket from an aircraft carrier. Operation Sandy involved the September 6, 1947 launch of a V-2 rocket from the deck of the USS Midway. A newsreel account of the launch can be viewed online.


1944

After two previous failures, Germany successfully launches their V-2 rocket. It is the first man-made object to achieve sub-orbital spaceflight, reaching an altitude of 100 km (62 miles). The V-2 is the progenitor of all modern rockets including the U.S. Apollo program's Saturn V moon rocket.


1961

The Redstone rocket launched the first American satellite into orbit. The rocket was developed by a team headed by Dr. Werhner von Braun, who had been working for the U.S. Army at Fort Bliss, Texas. In 1950, the team was transferred to Redstone Arsenal in Huntsville, Alabama, where the army centered its rocket development activities. The arsenal had been used during World War II to produce various chemical compounds and pyrotechnical devices. Its name referred to the color of the rock and soil in Huntsville


Five Lunar Orbiter missions were launched in 1966 through 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken with the Lunar Orbiter 5 medium resolution camera.

1967


1969 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1971 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1972 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1973 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1976 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1979 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1981 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1983 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1986 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1990 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1995 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


1998 1967 with the purpose of mapping the lunar surface before the Apollo landings. All five missions were successful, and 99% of the Moon was photographed with a resolution of 60 m or better. The first three missions were dedicated to imaging 20 potential lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 95% of the farside, and Lunar Orbiter 5 completed the farside coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. The images at the top of the page show the Lunar Orbiter spacecraft with the high and medium resolution cameras at the center, and an image of the crater Tycho taken wi


ad