Noise in imaging technology
Download
1 / 43

Noise in Imaging Technology - PowerPoint PPT Presentation


  • 137 Views
  • Uploaded on

Noise in Imaging Technology. Two plagues in image acquisition Noise interference Blur (motion, out-of-focus, hazy weather) Difficult to obtain high-quality images as imaging goes Beyond visible spectrum Micro-scale (microscopic imaging) Macro-scale (astronomical imaging). What is Noise?.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Noise in Imaging Technology' - reia


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Noise in imaging technology
Noise in Imaging Technology

  • Two plagues in image acquisition

    • Noise interference

    • Blur (motion, out-of-focus, hazy weather)

  • Difficult to obtain high-quality images as imaging goes

    • Beyond visible spectrum

    • Micro-scale (microscopic imaging)

    • Macro-scale (astronomical imaging)


What is noise
What is Noise?

  • noise means any unwanted signal

  • One person’s signal is another one’s noise

  • Noise is not always random and randomness is an artificial term

  • Noise is not always bad.


Stochastic resonance
Stochastic Resonance

no noise

heavy noise

light noise


Image Denoising

  • Where does noise come from?

    • Sensor (e.g., thermal or electrical interference)

    • Environmental conditions (rain, snow etc.)

  • Why do we want to denoise?

    • Visually unpleasant

    • Bad for compression

    • Bad for analysis


Noisy image examples
Noisy Image Examples

thermal imaging

electrical interference

physical interference

ultrasound imaging


Noise removal techniques
Noise Removal Techniques

Linear filtering

Nonlinear filtering

Recall

Linear system


Image Denoising

  • Introduction

  • Impulse noise removal

    • Median filtering

  • Additive white Gaussian noise removal

    • 2D convolution and DFT

  • Periodic noise removal

    • Band-rejection and Notch filter


Impulse noise salt pepper noise
Impulse Noise (salt-pepper Noise)

Definition

Each pixel in an image has the probability of p/2 (0<p<1) being

contaminated by either a white dot (salt) or a black dot (pepper)

with probability of p/2

noisy pixels

with probability of p/2

clean pixels

with probability of 1-p

X: noise-free image, Y: noisy image

Note: in some applications, noisy pixels are not simply black or white,

which makes the impulse noise removal problem more difficult


Numerical example
Numerical Example

P=0.1

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 255 0 128 128 128 128 128 128

128 128 128 128 0 128 128 128 128 0

128 128 128 128 128 128 128 128 128 128

128 128 0 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128

0 128 128 128 128 255 128 128 128 128

128 128 128 128 128 128 128 128 128 255

128 128 128 128 128 128 128 255 128 128

X

Y

Noise level p=0.1 means that approximately 10% of pixels are contaminated by

salt or pepper noise (highlighted by red color)


Matlab command
MATLAB Command

>Y = IMNOISE(X,'salt & pepper',p)

Notes:

 The intensity of input images is assumed to be normalized to [0,1].

If X is double, you need to do normalization first, i.e., X=X/255;

 The default value of p is 0.05 (i.e., 5 percent of pixels are contaminated)

 imnoise function can produce other types of noise as well (you need to

change the noise type ‘salt & pepper’)


Impulse noise removal problem
Impulse Noise Removal Problem

filtering

algorithm

denoised

image

^

X

^

Can we make the denoised image X as close

to the noise-free image X as possible?

Noisy image Y


Median operator
Median Operator

  • Given a sequence of numbers {y1,…,yN}

    • Mean: average of N numbers

    • Min: minimum of N numbers

    • Max: maximum of N numbers

    • Median: half-way of N numbers

Example

sorted


1d median filtering
1D Median Filtering

y(n)

W=2T+1

MATLAB command: x=median(y(n-T:n+T));

Note: median operator is nonlinear


Numerical example1
Numerical Example

T=1:

Boundary

Padding


2d median filtering
2D Median Filtering

x(m,n)

W:

(2T+1)-by-(2T+1) window

MATLAB command: x=medfilt2(y,[2*T+1,2*T+1]);


Numerical example2
Numerical Example

225 225 225 226 226 226 226 226

225 225 255 226 226 226 225 226

226 226 225 226 0 226 226 255

255 226 225 0 226 226 226 226

225 255 0 225 226 226 226 255

255 225 224 226 226 0 225 226

226 225 225 226 255 226 226 228

226 226 225 226 226 226 226 226

0 225 225 226 226 226 226 226

225 225 226 226 226 226 226 226

225 226 226 226 226 226 226 226

226 226 225 225 226 226 226 226

225 225 225 225 226 226 226 226

225 225 225 226 226 226 226 226

225 225 225 226 226 226 226 226

226 226 226 226 226 226 226 226

^

X

Y

Sorted: [0, 0, 0, 225, 225, 225, 226, 226, 226]


Image example
Image Example

P=0.1

denoised

image

^

Noisy image Y

X

3-by-3 window


Idea of improving median filtering
Idea of Improving Median Filtering

  • Can we get rid of impulse noise without affecting clean pixels?

    • Yes, if we know where the clean pixels are

      or equivalently where the noisy pixels are

  • How to detect noisy pixels?

    • They are black or white dots


Median filtering with noise detection
Median Filtering with Noise Detection

Noisy image Y

Median filtering

x=medfilt2(y,[2*T+1,2*T+1]);

Noise detection

C=(y==0)|(y==255);

Obtain filtering results

xx=c.*x+(1-c).*y;


Image example1
Image Example

noisy

(p=0.2)

clean

with

noise

detection

w/o

noise

detection


Image Denoising

  • Introduction

  • Impulse noise removal

    • Median filtering

  • Additive white Gaussian noise removal

    • 2D convolution and DFT

  • Periodic noise removal

    • Band-rejection and Notch filter


Additive white gaussian noise
Additive White Gaussian Noise

Definition

Each pixel in an image is disturbed by a Gaussian random variable

With zero mean and variance 2

X: noise-free image, Y: noisy image

Note: unlike impulse noise situation, every pixel in the image contaminated

by AWGN is noisy


Numerical example3
Numerical Example

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128

128 128 129 127 129 126 126 128

126 128 128 129 129 128 128 127

128 128 128 129 129 127 127 128

128 129 127 126 129 129 129 128

127 127 128 127 129 127 129 128

129 130 127 129 127 129 130 128

129 128 129 128 128 128 129 129

128 128 130 129 128 127 127 126

2=1

X

Y


Matlab command1
MATLAB Command

>Y = IMNOISE(X,’gaussian',m,v)

or

>Y = X+m+randn(size(X))*v;

rand() generates random numbers uniformly distributed over [0,1]

Note:

randn() generates random numbers observing Gaussian distribution

N(0,1)


Image denoising
Image Denoising

filtering

algorithm

denoised

image

^

X

Question: Why not use median filtering?

Hint: the noise type has changed.

Noisy image Y


1d linear filtering
1D Linear Filtering

g(n)

h(n)

f(n)

See review section

Linear convolution

- Linearity

- Time-invariant property


Fourier series
Fourier Series

forward

inverse

time-domain convolution

frequency-domain multiplication

Note that the input signal is a discrete sequence

while its FT is a continuous function


Filter examples
Filter Examples

|H(w)|

Low-pass (LP)

h(n)=[1,1]

HP

LP

|h(w)|=2cos(w/2)

High-pass (LP)

h(n)=[1,-1]

w

|h(w)|=2sin(w/2)


2d linear filtering
2D Linear Filtering

g(m,n)

h(m,n)

f(m,n)

2D convolution

MATLAB function: C = CONV2(A, B)


2d filtering two sequential 1d filtering
2D Filtering=Two Sequential 1D Filtering

Just as we have observed with 2D transform, 2D (separable) filtering can be viewed as two sequential 1D filtering operations: one along row direction and the other along column direction

The order of filtering does not matter

h1 : 1D filter


Fourier series 2d case
Fourier Series (2D case)

spatial-domain convolution

frequency-domain multiplication

Note that the input signal is discrete

while its FT is a continuous function


Filter examples1
Filter Examples

|h(w1,w2)|

Low-pass (LP)

h1(n)=[1,1]

1D

|h1(w)|=2cos(w/2)

h(n)=[1,1;1,1]

2D

w2

|h(w1,w2)|=4cos(w1/2)cos(w2/2)

w1


Image dft example
Image DFT Example

choice 1: Y=fft2(X)

Original ray image X


Image dft example con t
Image DFT Example (Con’t)

choice 1: Y=fft2(X)

choice 2: Y=fftshift(fft2(X))

Low-frequency at four corners

Low-frequency at the center

FFTSHIFT Shift zero-frequency component to center of spectrum.


Gaussian filter
Gaussian Filter

FT

MATLAB code:

>h=fspecial(‘gaussian’, HSIZE,SIGMA);


Image Example

denoised

noisy

denoised

PSNR=20.2dB

PSNR=24.4dB

PSNR=22.8dB

(=1)

(=1.5)

(=25)

Matlab functions: imfilter, filter2


Gaussian filter heat diffusion
Gaussian Filter=Heat Diffusion

Linear Heat Flow Equation:

Isotropic diffusion:

A Gaussian filter

with zero mean

and variance of t

scale


Basic idea of nonlinear diffusion
Basic Idea of Nonlinear Diffusion*

y

I(x,y)

x

image I

Diffusion should be anisotropic

instead of isotropic

image I viewed as a 3D surface (x,y,I(x,y))


Image Denoising

  • Introduction

  • Impulse noise removal

    • Median filtering

  • Additive white Gaussian noise removal

    • 2D convolution and DFT

  • Periodic noise removal

    • Band-rejection and Notch filter


Periodic noise
Periodic Noise

  • Source: electrical or electromechanical interference during image acquistion

  • Characteristics

    • Spatially dependent

    • Periodic – easy to observe in frequency domain

  • Processing method

    • Suppressing noise component in frequency domain


Image example2
Image Example

spatial

Frequency (note the four pairs of bright dots)



Image example3
Image Example

After filtering

Before filtering


ad