1 / 88

Methods for 3D Shape Matching and Retrieval

Methods for 3D Shape Matching and Retrieval. Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group. Our Aim #1. Given an example:. Find the most similar object(s) in a database. …. ,. ,. ,. Motivation. Lots of 3D archives: WWW Proprietary databases ...

Download Presentation

Methods for 3D Shape Matching and Retrieval

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Methods for 3D Shape Matching and Retrieval Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group

  2. Our Aim #1 • Given an example: • Find the most similar object(s) in a database … , , , Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  3. Motivation • Lots of 3D archives: • WWW • Proprietary databases • ... • Search engines for data: • Text, 2D images, music (MIDI), … • Emerging since 1998 for 3D Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  4. Our Aim #2 • Direct matching • Alignment • Establishing correspondences Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  5. Motivation • Partial matching/retrieval Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  6. Motivation • Partial matching/retrieval • Statistical shape analysis • Morphing • Texture transfer • Registration Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  7. General Problem Abstract representation facilitating: • identification of salient features of 3D objects • description of features • comparison (matching) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  8. Overview • Matching for 3D Shape Retrieval • Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  9. Matching for 3D Shape Retrieval Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  10. General Problem • We need a Descriptor →D( ) D : Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  11. General Problem We need a Distance Measure : = d( , ) d( , ) D( ) D( ) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  12. General Problem • We need a Distance Measure : • Close to (application driven) notion of resemblance • Computationally cheap and robust d( , ) d( , ) d( , ) ≤ ≤ Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  13. x1 D( ) ≡ xn 3D Zernike Descriptors • Feature vectors Xi: 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  14. 3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04] • Slightly better than [Funkhouser et al. ’02] • Object class dependent performance! • Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  15. 3D Zernike Descriptors Faces Airplanes Chairs Importance Coeff No. (Frequency) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  16. 3D Zernike Descriptors • Relevance feedback: • User selects relevant / irrelevant items • Distance measure is tuned • Learning Machines: • SVM (Support vector machines) [Vapnik ‘95] • One class SVM [Schölkopf et al. ’99] • (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  17. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  18. Geometric Similarity Estimation • Idea [Novotni & Klein 2001]: • Definition of „geometric“ similarity in terms of a geometric distance • Intuitive, simple, robust. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  19. Geometric Similarity Estimation Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  20. Geometric Similarity Estimation • Classification by user set threshold Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  21. Geometric Similarity Estimation • Measures deformation magnitude Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  22. Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  23. Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  24. Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  25. Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  26. Correspondence Matching • Ideally: dense mapping ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  27. Correspondence Matching • Ideally: dense mapping • Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  28. Correspondence Matching • Ideally: dense mapping • Easier: mapping salient points • Curvature extremes • Corners (Harris points in 2D) • Etc… • Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  29. Correspondence Matching • Ideally: dense mapping • Easier: mapping salient points • Curvature extremes • Corners (Harris points in 2D) • Etc… • Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  30. Correspondence Matching • Scale Space extremes [Lindeberg ‘94] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  31. Correspondence Matching We have: • Salient points • Spatial position • Size of local blobs How to match??? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  32. Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  33. Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  34. Correspondence Matching • Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  35. Correspondence Matching • Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  36. Correspondence Matching Assumption: Similar local descriptors Similar local geometries Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  37. Correspondence Matching Criteria for correspondences: Similar • Local geometries • Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  38. Correspondence Matching Similar constellations of points • Smooth mappings leave constellations consistent • Idea • Constellations are consistent if mapping is smooth Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  39. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  40. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  41. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  42. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  43. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  44. Correspondence Matching Similar constellations of points • Idea: • Constellations are consistent if mapping is smooth • Thin Plate Spline interpolation [Brookstein ’89]  minimize: Total curvature Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  45. Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  46. Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  47. Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  48. Correspondence Matching Find (sub)sets of correspondences: • Small local descriptor distances • Small deformation energy Hierarchical pruning and clustering • Using: • Local descriptors • Geometrical constellation consistency Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  49. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

  50. Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

More Related