1 / 35

The CMOS Inverter

The CMOS Inverter. Lecture 3 Static properties = voltage transfer curves (VTC) and noise margins. Week 2: The CMOS inverter. Tuesday Static properties Voltage transfer curves (VTC) Noise margins Exercise ( Kjell , 1 hour) Thursday Dynamic properties Propagation delay

rbetsy
Download Presentation

The CMOS Inverter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The CMOS Inverter Lecture 3 Staticproperties = voltage transfer curves (VTC) and noisemargins

  2. Week 2: The CMOS inverter • Tuesday • Static properties • Voltage transfer curves (VTC) • Noise margins • Exercise (Kjell, 1 hour) • Thursday • Dynamic properties • Propagation delay • Driving large capacitive loads w. optimal propagation delay • Exercise POTW (Victor, 2 hours) • Friday • Prelab 1 deadline 1PM MCC092 IC Design - Lecture 3: The Inverter

  3. What happened last week? • Let’s do a quiz about the transistor: • Go to socrative.com • Select Student login • Go to room: “MCC0922018” MCC092 IC Design - Lecture 3: The Inverter

  4. Where are we? Inverter Logic gates P-type pull-up network P OUT OUT IN IN N-type Pull-down network N Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

  5. Where are we? Inverter Logic gates P-type pull-up network 0 OUT 1 IN N-type Pull-down network Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

  6. Where are we? Inverter Logic gates P-type pull-up network 1 OUT 0 IN N-type Pull-down network Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

  7. Where are we? Inverter Logic gates P-type pull-up network IDS VSW OUT VSW IN N-type Pull-down network Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

  8. MOSFET I/V Characteristics IDS Saturation: IDSN=IDSAT,N ON • IDSN=GONVDS VDS OFF: IDS=0 OFF: IDS=0 • IDSP=GONVDS Saturation: IDSP=IDSAT,P ON MCC092 IC Design - Lecture 3: The Inverter

  9. MOSFET I/V Characteristics IDS Saturation: IDSN=IDSAT,N ON Saturation: ISDP=IDSAT,P ON • ISDP=GONVSD • IDSN=GONVDS VDS OFF: IDS=0 OFF: IDS=0 MCC092 IC Design - Lecture 3: The Inverter

  10. MOSFET I/V Characteristics IDS Saturation: IDSN=IDSAT,N ON Saturation: IDSP=IDSAT,P • IDSN=GONVDS VDS OFF: IDS=0 MCC092 IC Design - Lecture 3: The Inverter

  11. VIN/VOUT voltage plane VOUT VDD, VDD VDD NMOS NMOS OFF VIN VDD PMOS PMOS OFF MCC092 IC Design - Lecture 3: The Inverter

  12. VIN/VOUT voltage plane VOUT VDD, VDD VDD NMOS OFF PMOS OFF VIN VDD MCC092 IC Design - Lecture 3: The Inverter

  13. Voltage Transfer Characteristic - VTC VOUT VDD, VDD Inverter IDS VDD • IDS,P=0 NMOS OFF PMOS OFF 1 0 • IDS,N=0 VIN VDD VDS The ON p-switch pulls the output high MCC092 IC Design - Lecture 3: The Inverter

  14. Voltage Transfer Characteristic - VTC Inverter VOUT VDD, VDD VDD • IDS,P=0 0 1 NMOS OFF PMOS OFF • IDS,N=0 IDS VIN VDD The ON n-switch pulls the output low VDS MCC092 IC Design - Lecture 3: The Inverter

  15. An aside about MOSFET current equations Shockley’s continuous model: Our piecewise linear model: MCC092 IC Design - Lecture 3: The Inverter

  16. So with piecewise linear MOS model the inverter diagram is this: Notice different slopes between green and blue regions! Transition voltage is VGT/2 rather than VGT MCC092 IC Design - Lecture 3: The Inverter

  17. Voltage Transfer Characteristic - VTC VOUT VDD, VDD Inverter VDD NMOS OFF PMOS OFF IDS VSW VSW IDS VIN VDD The ON n-switch pulls the output low VDS MCC092 IC Design - Lecture 3: The Inverter

  18. Voltage Transfer Characteristic - VTC VOUT VDD, VDD Inverter VSW IDS VDD NMOS OFF PMOS OFF Switching means: VIN=VOUT IDS VSW VSW Saturation: IDSP,N=IDSAT,P VIN VDD VDS Switching occurs in the green region where both MOSFETs are saturated . . . . . . and saturation currents are equal: Solving for VINusing x=kN/kP yields MCC092 IC Design - Lecture 3: The Inverter

  19. Voltage Transfer Characteristic - VTC DV VOUT Inverter VSW IDS VDD NMOS OFF PMOS OFF IDS VSW VSW Saturation: IDSP,N=IDSAT,P VIN VDD The switchingvoltageequation can be rewritten on a form easier to graspifweintroduce VDS MCC092 IC Design - Lecture 3: The Inverter

  20. Voltage Transfer Characteristic - VTC VOUT VDD, VDD Inverter VSW IDS VDD NMOS OFF PMOS OFF IDS VSW VSW VIN VDD VDS Equal currents in top blue region where p-MOSFET is in linear region yields VOUT vs. VIN! MCC092 IC Design - Lecture 3: The Inverter

  21. Voltage Transfer Characteristic - VTC VOUT VDD, VDD Inverter VSW IDS VDD NMOS OFF PMOS OFF IDS VSW VSW VIN VDD VDS Equal currents in bottom blue region where n-MOSFET is linear region yields VOUT vs. VIN! MCC092 IC Design - Lecture 3: The Inverter

  22. The voltage characteristic (VTC) VOUT For x=kN/kP=1 we have What if we make n-channel MOSFET wider, i.e. for x>1? VDD What happens to VTC? WillswitchingvoltageVSW increase or decrease? Assume x=4 and we have Assumex=1/4 and we have 0 VIN VSW 0 VTN VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

  23. The voltage characteristic (VTC) VOUT Which VTC is NAND and which VTC is NOR? Assumeall transistor same width VDD NAND NOR 0 VIN VSW 0 VTN VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

  24. The voltage characteristic (VTC) VOUT How about current flow? No current flow in red regions! ”short-circuit” current ISCflows in blue/green regions n-channel MOSFET saturated for VIN<VSW VDD p-channel MOSFET saturated for VIN>VSW 0 VIN VSW 0 VTN VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

  25. Noise margins • What are they? • Why are they important? Answers the question: How much noise can the circuit tolerate? MCC092 IC Design - Lecture 3: The Inverter

  26. NoiseMargins - preliminairies VOUT Let´sdefine valid input and output voltage regions from pointswhereslopeof VTC is -1; That is whereAV = -1! AV is the voltagegain. VDD VOH,min Valid ”1” VOL,max Valid ”0” 0 0 VIL,max VIH,min VDD VIN MCC092 IC Design - Lecture 3: The Inverter

  27. Noisemargins - NMH VOUT VDD VIN VDD Valid ”1” VOH,min NMH VIH,min VIN not valid Valid ”0” Valid ”1” VIL,max VOL,max Valid ”0” 0 VIN VIL,max VIH,min VOUT MCC092 IC Design - Lecture 3: The Inverter

  28. Noise Margins- NML VOUT VDD VIN VDD Valid ”1” VOH,min VIH,min VIN not valid Valid ”1” VIL,max NML VOL,max Valid ”0” 0 VIN 0 VIH,min VIL,max VOUT MCC092 IC Design - Lecture 3: The Inverter

  29. Regenerative effect = How well the signal is regenerated from input to output f(VIN) Consider a pair of cross-coupled inverters VIN VOUT that is g(VOUT) We take the partial derivate of this function w.r.t VIN (using the chain rule): Slopes, that is, small-signal gains So we see that the inverse of f (the VTC) is g in each pair of corresponding voltage points. Only if the VTC has a region of gain magnitude > 1 bordered by two regions of gain magnitude < 1 is the circuit regenerative. Then there are two stable operating points. The VTC and its inverse are illustrated in the butterfly diagram. MCC092 IC Design - Lecture 3: The Inverter

  30. Butterfly Diagram In each pair of corresponding voltage points (VIN, VOUT) the product of the derivatives (that is the small-signal gains) of the two curves is 1 The points where both gains are -1 defines the voltages of interest for noise margins VOUT VDD VIN VOUT Valid ”1” VOH,min Memory cell characterization NMH VTC, that is f Inverse of VTC, that is g NML See W&H section 12.2.1.3 for more info if you want to. VOL,max Valid ”0” 0 VIN 0 VIH,min VIL,max MCC092 IC Design - Lecture 3: The Inverter

  31. Noise Margins – skewed inverters NMH NML NML NMH MCC092 IC Design - Lecture 3: The Inverter

  32. Noise Margins – an example NMH=VOH,min-VIH,minNML=VIL,max-VOL,max Let´sdefine valid regions from points where slope AV = -1! VOUT Thesepointsyieldsnumbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that NMH and NML can be calculated! VDD Valid ”1” VOH,min VOL,max Valid ”0” 0 VIN 0 VIL,max VIH,min VDD MCC092 IC Design - Lecture 3: The Inverter

  33. Noise Margins – an example NMH=VOH,min-VIH,min1.12-0.68=0.44 VNML=VIL,max- VOL,max = 0.52-0.08=0.44 V NMH=VOH,min-VIH,minNML=VIL,max-VOL,max Let´sdefine valid regions from points where slope AV = -1! VOUT DV=0.64 V 0.28 V 0.28 V Thesepointsyieldsnumbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that NMH and NML can be calculated! VDD Valid ”1” DV/8 VOH,min For x=1, VTN=0.28 V and VTP=-0.28 V wehaveVSW=0.28+0.64/2=0.60 V and DV=0.64 V DV/8 DV/8 Formulas can be derived (for x=1):VOH,min=VDD-DV/8VOL,max = DV/8 VIL,max=VSW-DV/8 VIH,min=VSW+DV/8 Formulas can be derived (for x=1): VOH,min=VDD-DV/8=1.12 VVOL,max = DV/8=80 mV VIL,max=VSW-DV/8=0.52 V VIH,min=VSW+DV/8=0.68 V VDD = 1.2 V VOL,max DV/8 Valid ”0” 0 VIN 0 VIL,max VIH,min VDD MCC092 IC Design - Lecture 3: The Inverter

  34. What about lab 1 • Calculate VSW and find from simulation in lab • Calculate noise margins and find from simulation MCC092 IC Design - Lecture 3: The Inverter

  35. Summary • CMOS inverter – schematic • Voltage transfer characteristics (VTC) • Regions of operation • How to calculateswitching voltage VSW • VSW dependence on kN/kP(that is, transistor widths) • Understand switching current (ISC) flow • Noisemargins: NMH and NML • Whyimportant? • Definition • Butterfly diagram MCC092 IC Design - Lecture 3: The Inverter

More Related