References Atkinson, A. C. and Donev, A. N. (1992). Optimum Experimental Designs, Oxford U.K.: Clarendon Press.

Cassity C.R., (1965) “Abscissas, Coefficients, and Error Term for the Generalized Gauss-LaguerreQuadrature Formula Using the Zero Ordinate,” Mathematics ofComputation, 19, 287-296.

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a re-view, Statistical Science 10: 273-304.

Grossmann, H., Holling, H. and Schwabe, R. (2002). Advances in optimum experimental design for conjoint analysis and discrete choice models, in Advances in Econometrics, Econometric Models in Marketing, Vol. 16, Franses, P. H. and Montgomery, A. L., eds. Amsterdam: JAI Press, 93-117.

Gotwalt, C., Jones, B. and Steinberg, D. (2009) Fast Computation of Designs Robust to Parameter Uncertainty for Nonlinear Settings accepted at Technometrics.

Huber, J. and Zwerina, K. (1996). The importance of utility balance in efficient choice designs, Journal of Marketing Research 33: 307-317.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior, in Frontiers in Econometrics, Zarembka, P., ed. New York: Academic Press, 105-142.

Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs, Technometrics37: 60-69.

Monahan, J. and Genz, A. (1997). Spherical-radial integration rules for Bayesian computation, Journal of the American Statistical Association 92: 664-674.

Sandor, Z. and Wedel, M. (2001). Designing conjoint choice experiments using managers' prior beliefs, Journal of Marketing Research 38: 430-444.

DEMA 2008, August 2008, Cambridge

19