Doubly linked lists l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 54

Doubly-Linked Lists PowerPoint PPT Presentation


  • 118 Views
  • Uploaded on
  • Presentation posted in: General

Doubly-Linked Lists. Same basic functions operate on list Each node has a forward and backward link: What advantages does a doubly-linked list offer?. 88. 42. 109. NULL. NULL. head_ptr. Doubly-Linked Lists. Same basic functions operate on list Each node has a forward and backward link:

Download Presentation

Doubly-Linked Lists

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Doubly linked lists l.jpg

Doubly-Linked Lists

  • Same basic functions operate on list

  • Each node has a forward and backward link:

  • What advantages does a doubly-linked list offer?

88

42

109

NULL

NULL

head_ptr


Doubly linked lists2 l.jpg

Doubly-Linked Lists

  • Same basic functions operate on list

  • Each node has a forward and backward link:

  • What advantages does a doubly-linked list offer?

    Cursor can move forwards and backwards in list.

88

42

109

NULL

NULL

head_ptr


Stacks and queues l.jpg

Stacks and Queues

Kruse and Ryba Ch 2 and 3


What is a stack l.jpg

What is a stack?

  • It is an ordered group of homogeneous items of elements.

  • Elements are added to and removed from the top of the stack (the mostrecently added items are at the top of the stack).

  • The last element to be added is the first to be removed (LIFO: Last In, First Out).


Stack specification l.jpg

Stack Specification

  • Definitions: (provided by the user)

    • MAX_ITEMS: Max number of items that might be on the stack

    • ItemType: Data type of the items on the stack

  • Operations

    • MakeEmpty

    • Boolean IsEmpty

    • Boolean IsFull

    • Push (ItemType newItem)

    • Pop (ItemType& item) (or pop and top)


Push itemtype newitem l.jpg

Push (ItemType newItem)

  • Function: Adds newItem to the top of the stack.

  • Preconditions: Stack has been initialized and is not full.

  • Postconditions: newItem is at the top of the stack.


Pop itemtype item l.jpg

Pop (ItemType& item)

  • Function: Removes topItem from stack and returns it in item.

  • Preconditions: Stack has been initialized and is not empty.

  • Postconditions: Top element has been removed from stack and itemis a copy of the removed element.


Stack implementation l.jpg

Stack Implementation

#include "ItemType.h"

// Must be provided by the user of the class

// Contains definitions for MAX_ITEMS and ItemType

class StackType {

public:

StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);

private:

int top;

ItemType items[MAX_ITEMS];

};


Stack implementation cont l.jpg

Stack Implementation (cont.)

StackType::StackType()

{

top = -1;

}

void StackType::MakeEmpty()

{

top = -1;

}

bool StackType::IsEmpty() const

{

return (top == -1);

}


Stack implementation cont12 l.jpg

Stack Implementation (cont.)

bool StackType::IsFull() const

{

return (top == MAX_ITEMS-1);

}

 void StackType::Push(ItemType newItem)

{

top++;

items[top] = newItem;

}

 void StackType::Pop(ItemType& item)

{

item = items[top];

top--;

}


Slide13 l.jpg

Stack overflow

  • The condition resulting from trying to push an element onto a full stack.

    if(!stack.IsFull())

    stack.Push(item);

    Stack underflow

  • The condition resulting from trying to pop an empty stack.

    if(!stack.IsEmpty())

    stack.Pop(item);


Implementing stacks using templates l.jpg

Implementing stacks using templates

  • Templates allow the compiler to generate multiple versions of a class type or a function by allowing parameterized types.


Implementing stacks using templates15 l.jpg

Implementing stacks using templates

(cont.)

template<class ItemType>

class StackType {

public:

StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);

private:

int top;

ItemType items[MAX_ITEMS];

};


Example using templates l.jpg

Example using templates

// Client code

StackType<int> myStack;

StackType<float> yourStack;

StackType<StrType> anotherStack;

myStack.Push(35);

yourStack.Push(584.39);

The compiler generates distinct class types and gives its own internal name to each of the types.


Function templates l.jpg

Function templates

  • The definitions of the member functions must be rewritten as function templates.

    template<class ItemType>

    StackType<ItemType>::StackType()

    {

    top = -1;

    }

    template<class ItemType>

    void StackType<ItemType>::MakeEmpty()

    {

    top = -1;

    }


Function templates cont l.jpg

Function templates (cont.)

template<class ItemType>

bool StackType<ItemType>::IsEmpty() const

{

return (top == -1);

}

template<class ItemType>

bool StackType<ItemType>::IsFull() const

{

return (top == MAX_ITEMS-1);

}

template<class ItemType>

void StackType<ItemType>::Push(ItemType newItem)

{

top++;

items[top] = newItem;

}


Function templates cont19 l.jpg

Function templates (cont.)

template<class ItemType>

void StackType<ItemType>::Pop(ItemType& item)

{

item = items[top];

top--;

}


Implementing stacks using dynamic array allocation l.jpg

Implementing stacks using dynamic array allocation

private:

int top;

int maxStack;

ItemType *items;

};

template<class ItemType>

class StackType {

public:

StackType(int);

~StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);


Implementing stacks using dynamic array allocation cont l.jpg

Implementing stacks using dynamic array allocation (cont.)

template<class ItemType>

StackType<ItemType>::StackType(int max)

{

maxStack = max;

top = -1;

items = new ItemType[max];

}

template<class ItemType>

StackType<ItemType>::~StackType()

{

delete [ ] items;

}


Example postfix expressions l.jpg

Example: postfix expressions

  • Postfix notation is another way of writing arithmetic expressions.

  • In postfix notation, the operator is written after the two operands.

    infix: 2+5 postfix: 2 5 +

  • Expressions are evaluated from left to right.

  • Precedence rules and parentheses are never needed!!


Example postfix expressions cont l.jpg

Example: postfix expressions(cont.)


Postfix expressions algorithm using stacks cont l.jpg

Postfix expressions:Algorithm using stacks (cont.)


Postfix expressions algorithm using stacks l.jpg

Postfix expressions:Algorithm using stacks

WHILE more input items exist

Get an item

IF item is an operand

stack.Push(item)

ELSE

stack.Pop(operand2)

stack.Pop(operand1)

Compute result

stack.Push(result)

stack.Pop(result)


Slide26 l.jpg

  • Write the body for a function that replaces each copy of an item in a stack with another item. Use the following specification. (this function is a client program).

    ReplaceItem(StackType& stack, ItemType oldItem, ItemType newItem)

    Function: Replaces all occurrences of oldItem with newItem.

    Precondition: stack has been initialized.

    Postconditions: Each occurrence of oldItem in stack has been replaced by newItem.

    (You may use any of the member functions of the StackType, but you may not assume any knowledge of how the stack is implemented).


Slide27 l.jpg

1

3

5

2

3

1

3

5

1

Stack

tempStack

{

ItemType item;

StackType tempStack;

while (!Stack.IsEmpty()) {

Stack.Pop(item);

if (item==oldItem)

tempStack.Push(newItem);

else

tempStack.Push(item);

}

while (!tempStack.IsEmpty()) {

tempStack.Pop(item);

Stack.Push(item);

}

}

Stack

oldItem = 2

newItem = 5


What is a queue l.jpg

What is a queue?

  • It is an ordered group of homogeneous items of elements.

  • Queues have two ends:

    • Elements are added at one end.

    • Elements are removed from the other end.

  • The element added first is also removed first (FIFO: First In, First Out).

tail

queue

head

elements

enter

elements

exit

4

3

2

1

no changes of order


Queue specification l.jpg

Queue Specification

  • Definitions: (provided by the user)

    • MAX_ITEMS: Max number of items that might be on the queue

    • ItemType: Data type of the items on the queue

  • Operations

    • MakeEmpty

    • Boolean IsEmpty

    • Boolean IsFull

    • Enqueue (ItemType newItem)

    • Dequeue (ItemType& item) (serve and retrieve)


Enqueue itemtype newitem l.jpg

Enqueue (ItemType newItem)

  • Function: Adds newItem to the rear of the queue.

  • Preconditions: Queue has been initialized and is not full.

  • Postconditions: newItem is at rear of queue.


Dequeue itemtype item l.jpg

Dequeue (ItemType& item)

  • Function: Removes front item from queue and returns it in item.

  • Preconditions: Queue has been initialized and is not empty.

  • Postconditions: Front element has been removed from queue and item is a copy of removed element.


Implementation issues l.jpg

Implementation issues

  • Implement the queue as a circular structure.

  • How do we know if a queue is full or empty?

  • Initialization of front and rear.

  • Testing for a full or empty queue.


Slide35 l.jpg

Make front point to the element preceding the front element in the queue (one memory location will be wasted).


Slide36 l.jpg

Initialize front and rear


Slide37 l.jpg

Queue is empty now!!

rear == front


Queue implementation l.jpg

Queue Implementation

private:

int front;

int rear;

ItemType* items;

int maxQue;

};

template<class ItemType>

class QueueType {

public:

QueueType(int);

QueueType();

~QueueType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Enqueue(ItemType);

void Dequeue(ItemType&);


Queue implementation cont l.jpg

Queue Implementation (cont.)

template<class ItemType>

QueueType<ItemType>::QueueType(int max)

{

maxQue = max + 1;

front = maxQue - 1;

rear = maxQue - 1;

items = new ItemType[maxQue];

}


Queue implementation cont40 l.jpg

Queue Implementation (cont.)

template<class ItemType>

QueueType<ItemType>::~QueueType()

{

delete [] items;

}


Queue implementation cont41 l.jpg

Queue Implementation (cont.)

template<class ItemType>

void QueueType<ItemType>:: MakeEmpty()

{

front = maxQue - 1;

rear = maxQue - 1;

}


Queue implementation cont42 l.jpg

Queue Implementation (cont.)

template<class ItemType>

bool QueueType<ItemType>::IsEmpty() const

{

return (rear == front);

}

template<class ItemType>

bool QueueType<ItemType>::IsFull() const

{

return ( (rear + 1) % maxQue == front);

}


Queue implementation cont43 l.jpg

Queue Implementation (cont.)

template<class ItemType>

void QueueType<ItemType>::Enqueue (ItemType newItem)

{

rear = (rear + 1) % maxQue;

items[rear] = newItem;

}


Queue implementation cont44 l.jpg

Queue Implementation (cont.)

template<class ItemType>

void QueueType<ItemType>::Dequeue (ItemType& item)

{

front = (front + 1) % maxQue;

item = items[front];

}


Queue overflow l.jpg

Queue overflow

  • The condition resulting from trying to add an element onto a full queue.

    if(!q.IsFull())

    q.Enqueue(item);


Queue underflow l.jpg

Queue underflow

  • The condition resulting from trying to remove an element from an empty queue.

    if(!q.IsEmpty())

    q.Dequeue(item);


Example recognizing palindromes l.jpg

Example: recognizing palindromes

  • A palindrome is a string that reads the same forward and backward.

    Able was I ere I saw Elba 

  • We will read the line of text into both a stack and a queue.

  • Compare the contents of the stack and the queue character-by-characterto see if they would produce the same string of characters.


Example recognizing palindromes48 l.jpg

Example: recognizing palindromes


Example recognizing palindromes49 l.jpg

Example: recognizing palindromes

cout << "Enter string: " << endl;

while(cin.peek() != '\\n') {

cin >> ch;

if(isalpha(ch)) {

if(!s.IsFull())

s.Push(toupper(ch));

if(!q.IsFull())

q.Enqueue(toupper(ch));

}

}

#include <iostream.h>

#include <ctype.h>

#include "stack.h"

#include "queue.h“

int main()

{

StackType<char> s;

QueType<char> q;

char ch;

char sItem, qItem;

int mismatches = 0;


Example recognizing palindromes50 l.jpg

Example: recognizing palindromes

while( (!q.IsEmpty()) && (!s.IsEmpty()) ) {

s.Pop(sItem);

q.Dequeue(qItem);

if(sItem != qItem)

++mismatches;

}

if (mismatches == 0)

cout << "That is a palindrome" << endl;

else

cout << That is not a palindrome" << endl;

return 0;

}


Case study simulation l.jpg

Case Study: Simulation

  • Queuing System: consists of servers and queues of objects to be served.

  • Simulation: a program that determines how long items must wait in line before being served.


Case study simulation cont l.jpg

Case Study: Simulation (cont.)

  • Inputs to the simulation:

    (1) the length of the simulation

    (2) the average transaction time

    (3) the number of servers

    (4) the average time between job arrivals


Case study simulation cont53 l.jpg

Case Study: Simulation (cont.)

  • Parameters the simulation must vary:

    (1) number of servers

    (2) time between arrivals of items

  • Output of simulation: average wait time.


  • Login