1 / 30

# Linear-Space Alignment - PowerPoint PPT Presentation

Linear-Space Alignment. Subsequences and Substrings. Definition A string x’ is a substring of a string x, if x = ux’v for some prefix string u and suffix string v (similarly, x’ = x i …x j , for some 1  i  j  |x|) A string x’ is a subsequence of a string x

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Linear-Space Alignment' - rana-hanson

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Linear-Space Alignment

Definition A string x’ is a substring of a string x,

if x = ux’v for some prefix string u and suffix string v

(similarly, x’ = xi…xj, for some 1  i  j  |x|)

A string x’ is a subsequence of a string x

if x’ can be obtained from x by deleting 0 or more letters

(x’ = xi1…xik, for some 1  i1  …  ik  |x|)

Note: a substring is always a subsequence

z = brcdbr; subseqence, not substring

Given a set of strings x, y,…, a common subsequence is a string u that is a subsequence of all strings x, y, …

• Longest common subsequence

• Given strings x = x1 x2 … xM, y = y1 y2 … yN,

• Find longest common subsequence u = u1 … uk

• Algorithm:

F(i – 1, j)

• F(i, j) = max F(i, j – 1)

F(i – 1, j – 1) + [1, if xi = yj; 0 otherwise]

• Ptr(i, j) = (same as in N-W)

• Termination: trace back from Ptr(M, N), and prepend a letter to u whenever

• Ptr(i, j) = DIAG and F(i – 1, j – 1) < F(i, j)

• Hirschberg’s original algorithm solves this in linear space

• Introduction: Compute optimal score

It is easy to compute F(M, N) in linear space

Allocate ( column[1] )

Allocate ( column[2] )

For i = 1….M

If i > 1, then:

Free( column[ i – 2 ] )

Allocate( column[ i ] )

For j = 1…N

F(i, j) = …

To compute both the optimal score and the optimal alignment:

Divide & Conquer approach:

Notation:

xr, yr: reverse of x, y

E.g. x = accgg;

xr = ggcca

Fr(i, j): optimal score of aligning xr1…xri & yr1…yrj

same as aligning xM-i+1…xM & yN-j+1…yN

Lemma: (assume M is even)

F(M, N) = maxk=0…N( F(M/2, k) + Fr(M/2, N – k) )

M/2

x

F(M/2, k)

Fr(M/2, N – k)

y

k*

Example:

ACC-GGTGCCCAGGACTG--CAT

ACCAGGTG----GGACTGGGCAG

k* = 8

• Now, using 2 columns of space, we can compute

for k = 1…M, F(M/2, k), Fr(M/2, N – k)

PLUS the backpointers

x1

xM/2

xM

x1

xM/2+1

xM

y1

y1

yN

yN

• Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)

• Also, we can trace the path exiting column M/2 from k*

0 1 …… M/2

M/2+1 …… M M+1

k*

k*+1

• Iterate this procedure to the left and right!

k*

N-k*

M/2

M/2

Hirschberg’s Linear-space algorithm:

MEMALIGN(l, l’, r, r’): (aligns xl…xl’ with yr…yr’)

• Let h = (l’-l)/2

• Find (in Time O((l’ – l)  (r’ – r)), Space O(r’ – r))

the optimal path, Lh, entering column h – 1, exiting column h

Let k1 = pos’n at column h – 2 where Lh enters

k2 = pos’n at column h + 1 where Lh exits

3. MEMALIGN(l, h – 2, r, k1)

4. Output Lh

• MEMALIGN(h + 1, l’, k2, r’)

Top level call: MEMALIGN(1, M, 1, N)

Time, Space analysis of Hirschberg’s algorithm:

To compute optimal path at middle column,

For box of size M  N,

Space: 2N

Time: cMN, for some constant c

Then, left, right calls cost c( M/2  k* + M/2  (N – k*) ) = cMN/2

All recursive calls cost

Total Time: cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN)

Total Space: O(N) for computation,

O(N + M) to store the optimal alignment

### Heuristic Local Alignerers

• The basic indexing & extension technique

• Indexing: techniques to improve sensitivity

• Pairs of Words, Patterns

• Systems for local alignment

……

Dictionary:

All words of length k (~10)

Alignment initiated between words of alignment score  T

(typically T = k)

Alignment:

Ungapped extensions until score

below statistical threshold

Output:

All local alignments with score

> statistical threshold

query

……

scan

DB

query

A C G A A G T A A G G T C C A G T

Gapped extensions until threshold

• Extensions with gaps until score < C below best score so far

Output:

GTAAGGTCCAGT

GTTAGGTC-AGT

C T G A T C C T G G A T T G C G A

X%

Sens.

Speed

Kent WJ, Genome Research 2002

Methods to improve sensitivity/speed

• Using pairs of words

• Using inexact words

• Patterns—non consecutive positions

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCACGGACCAGTGACTACTCTGATTCCCAG……

……ATAACGGACGACTGATTACACTGATTCTTAC……

……GGCGCCGACGAGTGATTACACAGATTGCCAG……

TTTGATTACACAGAT

T G TT CAC G

Kent WJ, Genome Research 2002

Patterns increase the likelihood of at least one match within a long conserved region

Consecutive Positions

Non-Consecutive Positions

6 common

5 common

7 common

3 common

On a 100-long 70% conserved region:

ConsecutiveNon-consecutive

Expected # hits: 1.07 0.97

Prob[at least one hit]: 0.30 0.47

11 positions

11 positions

10 positions

TTTGATTACACAGAT

T G TT CAC G

T G T C CAG

TTGATT A G

• K patterns

• Takes K times longer to scan

• Patterns can complement one another

• Computational problem:

• Given: a model (prob distribution) for homology between two regions

• Find: best set of K patterns that maximizes Prob(at least one match)

How long does it take

to search the query?

Buhler et al. RECOMB 2003

Sun & Buhler RECOMB 2004

• NCBI BLAST: search the universe http://www.ncbi.nlm.nih.gov/BLAST/

• MEGABLAST: http://genopole.toulouse.inra.fr/blast/megablast.html

• Optimized to align very similar sequences

• Works best when k = 4i  16

• Linear gap penalty

• WU-BLAST: (Wash U BLAST) http://blast.wustl.edu/

• Very good optimizations

• Good set of features & command line arguments

• BLAT http://genome.ucsc.edu/cgi-bin/hgBlat

• Faster, less sensitive than BLAST

• Good for aligning huge numbers of queries

• CHAOS http://www.cs.berkeley.edu/~brudno/chaos

• Uses inexact k-mers, sensitive

• PatternHunter http://www.bioinformaticssolutions.com/products/ph/index.php

• Uses patterns instead of k-mers

• BlastZ http://www.psc.edu/general/software/packages/blastz/

• Uses patterns, good for finding genes

• Typhon http://typhon.stanford.edu

• Uses multiple alignments to improve sensitivity/speed tradeoff

Query:gattacaccccgattacaccccgattaca (29 letters) [2 mins]

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences) 1,726,556 sequences; 8,074,398,388 total letters

>gi|28570323|gb|AC108906.9|Oryza sativa chromosome 3 BAC OSJNBa0087C10 genomic sequence, complete sequence Length = 144487 Score = 34.2 bits (17), Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plus

Query: 4 tacaccccgattacaccccga 24

||||||| |||||||||||||

Sbjct: 125138 tacacccagattacaccccga 125158

Score = 34.2 bits (17),

Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plus

Query: 4 tacaccccgattacaccccga 24

||||||| |||||||||||||

Sbjct: 125104 tacacccagattacaccccga 125124

>gi|28173089|gb|AC104321.7| Oryza sativa chromosome 3 BAC OSJNBa0052F07 genomic sequence, complete sequence Length = 139823 Score = 34.2 bits (17), Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plus

Query: 4 tacaccccgattacaccccga 24

||||||| |||||||||||||

Sbjct: 3891 tacacccagattacaccccga 3911

Query: Human atoh enhancer, 179 letters [1.5 min]

Result: 57 blast hits

• gi|7677270|gb|AF218259.1|AF218259 Homo sapiens ATOH1 enhanc... 355 1e-95

• gi|22779500|gb|AC091158.11| Mus musculus Strain C57BL6/J ch... 264 4e-68

• gi|7677269|gb|AF218258.1|AF218258 Mus musculus Atoh1 enhanc... 256 9e-66

• gi|28875397|gb|AF467292.1| Gallus gallus CATH1 (CATH1) gene... 78 5e-12

• gi|27550980|emb|AL807792.6| Zebrafish DNA sequence from clo... 54 7e-05

• gi|22002129|gb|AC092389.4| Oryza sativa chromosome 10 BAC O... 44 0.068

• gi|22094122|ref|NM_013676.1| Mus musculus suppressor of Ty ... 42 0.27

• gi|13938031|gb|BC007132.1| Mus musculus, Similar to suppres... 42 0.27

gi|7677269|gb|AF218258.1|AF218258 Mus musculus Atoh1 enhancer sequence Length = 1517

Score = 256 bits (129), Expect = 9e-66 Identities = 167/177 (94%),

Gaps = 2/177 (1%) Strand = Plus / Plus

Query: 3 tgacaatagagggtctggcagaggctcctggccgcggtgcggagcgtctggagcggagca 62

||||||||||||| ||||||||||||||||||| ||||||||||||||||||||||||||

Sbjct: 1144 tgacaatagaggggctggcagaggctcctggccccggtgcggagcgtctggagcggagca 1203

Query: 63 cgcgctgtcagctggtgagcgcactctcctttcaggcagctccccggggagctgtgcggc 122

|||||||||||||||||||||||||| ||||||||| |||||||||||||||| |||||

Sbjct: 1204 cgcgctgtcagctggtgagcgcactc-gctttcaggccgctccccggggagctgagcggc 1262

Query: 123 cacatttaacaccatcatcacccctccccggcctcctcaacctcggcctcctcctcg 179

||||||||||||| || ||| |||||||||||||||||||| |||||||||||||||

Sbjct: 1263 cacatttaacaccgtcgtca-ccctccccggcctcctcaacatcggcctcctcctcg 1318

http://www.ncbi.nlm.nih.gov/BLAST/

2

2

1

1

1

1

2

2

2

2

K

x1

K

K

K

K

x2

x3

xK

### Hidden Markov Models

• Hidden Markov models – the theory

• Probabilistic interpretation of alignments using HMMs

Later in the course:

• Applications of HMMs to biological sequence modeling and discovery of features such as genes

A casino has two dice:

• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

P(1) = P(2) = P(3) = P(5) = 1/10

P(6) = 1/2

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

• You bet \$1

• You roll (always with a fair die)

• Casino player rolls (maybe with fair die, maybe with loaded die)

• Highest number wins \$2

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Prob = 1.3 x 10-35

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

FAIR

FAIR

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

Prob(6) = 64%

0.05

0.95

0.95

FAIR

P(1|F) = 1/6

P(2|F) = 1/6

P(3|F) = 1/6

P(4|F) = 1/6

P(5|F) = 1/6

P(6|F) = 1/6

P(1|L) = 1/10

P(2|L) = 1/10

P(3|L) = 1/10

P(4|L) = 1/10

P(5|L) = 1/10

P(6|L) = 1/2

0.05