Sponsored Links
This presentation is the property of its rightful owner.
1 / 40

热力学 PowerPoint PPT Presentation


  • 67 Views
  • Uploaded on
  • Presentation posted in: General

第二篇 热学. 一、热学的研究对象 热现象与热运动,以及热运动与其它运动形式之间相互转换所遵循的规律。 热运动是热现象的微观本质 , 热现象是热运动的宏观表现。. 二、热学的主要内容:. 气体动理论. (微观角度,统计原理). 宏观量与微观量的关系. 热力学. (能量角度). 热功转换的关系及条件. 第六章 气体动理论. 基本内容: 理想气体状态方程 压强和温度的微观解释; 能量按自由度均分原理,理想气体的内能; 麦克斯韦速率分布律;. 斥力. r 0. r. O.

Download Presentation

热力学

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript




r0

r

O

6.1

1

(10-7m310-10m)

2

3


1

2


PVT

1(V):

2(P)

Pa

3(T)

T ( K )

01atm1mol22.4


6.2

1-

2

1

2

3


1

P0V0T01mol


(1)MPVT

MVPT

MTPV

(2)

2

-


3

VT


[1] 3105Pa27C0.24kg/m3

T=273+27=300K


=

P

nkT

[2] 1cm3

P=1.013105PaT=273.15K


6.3

1

(1)

(2)

16


y

S1

c

S2

mvix

i

x

b

-mvix

a

z

2

x S1

Pix=-mvix-mvix=-2mvix

S12mvix

S1

S1:

S1S1:


NxS1

NS1


(1) P n

(2) Pn

1

1

=

+

+

=

+

+

2

2

P

p

p

n

m

v

n

m

v

L

L

1

2

1

1

1

2

2

2

3

3

(3)n1n2 ......


:

1

2


[3] 1eV

:T

[4] P1P2?

n1=n2T1T2

PnkT

P1P2


6.4

1

2

3()


M

1

l

M

2

1

M ( x,y,z )

3

M1(x1y1z1)M2(x2y2z2 )

65

5


z

P

G

o

y

x

3

3

2

Gxyz

GP

GP

6

6


3

0

3

5

2

3

6

3

3

( )

3 i

(He)

(H2O2N2)

(H2O)


T


T

:


T

T

T

Ti

T1mol

T

KR


[5]?

?

H21He 2

1 =21 = 2 1 = 2 = 1

11 = 22

1 = 52 = 3

MM1= M2 =M=1kg


[6]10cm3T=300K510-6 mmHg1760 mmHg

N32

P = nkT = NkTV N=PVkT =1.611012


6.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

x

N

x

x

x

+

X


(m/s)

100

1.4 %

1859

1920

100~200

8.1 %

200~300

16.5 %

300~400

21.4 %

400~500

20.6 %

500~600

15.1 %

600~700

9.2 %

700~800

4.8 %

800~900

2.0 %

900

0.9 %


dN

N,

fv

vv


Maxwell

1859Maxwell

vvdvdNN

1

TmkT,m

Maxwell

Maxwell

2


f

(v)

dN

f (v)=

N

dv

v

v

dv

1fv:

vv+dv


212

0

3

f(v)Tm.


f (v)

f (v)

T

m

m

T

0

v

v

0

1

fvVp


2

3


f (v)

o

v

v

v

v

p

2

v

v

v

2

p


7fvMaxwellvpn

0vp

vvdv


v1v2

v1v2v1v2

N1v1v2N


f

(v)

vp

v

8




  • Login