Blok iii pojazdy stosowane w rolnictwie
Download
1 / 21

Blok III: Pojazdy stosowane w rolnictwie - PowerPoint PPT Presentation


  • 145 Views
  • Uploaded on

Blok III: Pojazdy stosowane w rolnictwie. Lekcja 2: Ogólna budowa i działanie silników spalinowych (1 godz.) Rodzaje silników spalinowych Ogólna budowa silników spalinowych Zasady pracy silników spalinowych.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Blok III: Pojazdy stosowane w rolnictwie' - ralph-alvarez


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Blok iii pojazdy stosowane w rolnictwie

Blok III: Pojazdy stosowanew rolnictwie

Lekcja 2: Ogólna budowa i działanie silników spalinowych (1 godz.)

Rodzaje silników spalinowych

Ogólna budowa silników spalinowych

Zasady pracy silników spalinowych

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego



  • 1. Rodzaje silników spalinowych

Kolorem różowym zaznaczono silniki wykorzystywane w pojazdach rolniczych


  • 2. Ogólna budowa silników spalinowych

Silnikiem spalinowym nazywa się maszynę cieplną, w której w wyniku spalania paliwa zostaje wytworzona energia cieplna, zamieniona następnie na energię mechaniczną.

Silnik spalinowy składa się z kadłuba, głowicy oraz z układów: korbowego, rozrządu, olejenia, zasilania, chłodzenia oraz silniki z zapłonem iskrowym – zapłonowego.

1 - kadłub,

2 - głowica,

3 - układ korbowy,

4 - układ rozrządu zaworowy,

5 - układ olejenia,

6 - układ zasilania,

7 - układ chłodzenia


  • 2. Ogólna budowa silników spalinowych

W kadłubie są osadzone elementy poszczególnych układów i zespołów silnika.

Układ korbowy silnika składa się z tłoka z pierścieniami, sworznia tłokowego, wału korbowego, korbowodu łączącego tłok z wałem korbowym oraz koła zamachowego. Zadaniem tego zespołu jest przenoszenie ruchu tłoka na wał korbowy i zamiana ruchu postępowo-zwrotnego tłoka na ruch obrotowy wału korbowego.

Układ rozrządu zaworowy składa się z zaworów (dolotowego i wylotowego), sprężyn zaworowych, dźwigni zaworowych, popychaczy i wałka rozrządu, a bezzaworowy z otworów i kanałów odsłanianych i zasłanianych przez tłok silnika. Zadaniem tego układu jest otwieranie i zamykanie zaworów w odpowiednim czasie tak, aby umożliwić dostarczenie świeżego ładunku powietrza lub mieszanki paliwowo-powietrznej do cylindra oraz odprowadzenie gazów spalinowych na zewnątrz cylindra.


  • 2. Ogólna budowa silników spalinowych

Układ olejenia składa się ze zbiornika na olej, pompy oleju, przewodów i kanałów olejowych oraz filtrów oleju. Jego zadaniem jest doprowadzenie oleju do poszczególnych par ciernych (np. czop wału korbowego - łożysko wału korbowego) w celu zmniejszenia tarcia występującego podczas pracy silnika.

Układu zasilania składa się ze zbiornika paliwa, pompy zasilającej, filtra paliwa, gaźnika lub pompy wtryskowej i wtryskiwaczy. Zadanie układu zasilania polega na dostarczeniu odpowiedniej ilości paliwa do cylindra. Zależnie od rodzaju silnika paliwo albo jest dostarczane w postaci mieszanki paliwowo-powietrznej (silniki gaźnikowe), albo bezpośrednio wtryskiwane do cylindra (silniki wtryskowe).

Układ chłodzenia składa się z wymiennika ciepła (chłodnica lub użebrowanie cylindra), pompy wody, wentylatora, kanałów przepływowych i termostatu. Układ chłodzenia służy do odprowadzania nadmiaru ciepła z silnika, aby zapewnić mu odpowiednią temperaturę pracy.


  • 2. Ogólna budowa silników spalinowych

Układ zapłonowy występuje w silnikach z zapłonem iskrowym. Składa się ze źródła prądu, aparatu zapłonowego, cewki zapłonowej, świecy zapłonowej i przewodów elektrycznych. Jego zadaniem jest wytworzenie iskry elektrycznej w celu zapalenia mieszanki paliwowo-powietrznej w chwili, gdy została ona odpowiednio sprężona przez tłok zbliżający się do górnego martwego położenia (GMP).



  • 3. Zasady pracy silników spalinowych

W silnikach spalinowych tłokowych sprężona mieszanka paliwa i powietrza jest spalana w cylindrze, zamkniętym z jednej strony głowicą, a z drugiej — tłokiem. W wyniku tego procesu zwiększa się w cylindrze temperatura gazów i ich ciśnienie. Gorące gazy wywierają nacisk na ruchomy tłok silnika i przesuwają go, wykonując w ten sposób pracę mechaniczną. Posuwisty ruch tłoka zostaje zamieniony za pomocą mechanizmu korbowego na ruch obrotowy wału wykorbionego.

Tłok porusza się w cylindrze pomiędzy dwoma skrajnymi położeniami. Położenie, w którym tłok jest najbardziej oddalony od wału wykorbionego, nazywa się zewnętrznym zwrotnym położeniem (ZZP) lub górnym zwrotnym położeniem (GZP). Przestrzeń zawarta między głowicą a tłokiem w GZP ma najmniejszą objętość (V0); przestrzeń ta nazywa się komorą spalania. Położenie, w którym tłok znajduje się najbliżej wału wykorbionego, nazywa się wewnętrznym zwrotnym położeniem (WZP) lub dolnym zwrotnym położeniem (DZP). Przestrzeń zawarta między głowicą a tłokiem w DZP ma największą objętość (V), zwaną całkowitą objętością cylindra.


  • 3. Zasady pracy silników spalinowych

CZĘŚCI SKŁADOWE SILNIKA

KOMORA SPALANIA l OBJĘTOŚĆ SKOKOWA


  • 3. Zasady pracy silników spalinowych

Droga, którą przebywa tłok od jednego do drugiego zwrotnego położenia, nazywa się skokiem tłoka; ażeby ją przebyć, tłok musi wykonać ruch zwany suwem.

Objętość cylindra zawarta między GZP a DZP nazywa się objętością skokową cylindra i jest oznaczana symbolem Vs. Objętość całkowitą cylindra można więc obliczyć jako sumę objętości skokowej i objętości komory spalania

Stosunek całkowitej objętości cylindra do objętości komory spalania nazywa się stopniem sprężania i oznacza grecką literę ε (epsilon).


  • 3. Zasady pracy silników spalinowych

W silniku spalinowym czterosuwowym na jeden obieg pracy przypadają cztery suwy tłoka. Tak więc w silniku czterosuwowym kolejne cztery podstawowe procesy cyklu pracy są przypisane poszczególnym suwom tłoka, które nazywamy: suwem dolotu (ssania), suwem sprężania, suwem pracy i suwem wylotu (wydechu).

Suw dolotu (ssania): Podczas ruchu tłoka od GZP do DZP spada ciśnienie (wzrasta objętość) w cylindrze, a ponieważ otwarty jest zawór dolotowy, wiec do cylindra dostaje się świeży ładunek w postaci mieszanki paliwowo-powietrznej .


  • 3. Zasady pracy silników spalinowych

Suw sprężania: Podczas ruchu tłoka od DZP do GZP w cylindrze zmniejszeniu ulega objętość komory nad tłokiem, a ponieważ zawory dolotowy i wylotowy są zamknięte, przeto mieszanka ulega sprężaniu. Pod koniec suwu sprężania następuje zapłon mieszanki spowodowany przeskokiem iskry elektrycznej między elektrodami świecy zapłonowej. W czasie ruchu tłoka od GZP do DZP następuje dokończenie procesu spalania.


  • 3. Zasady pracy silników spalinowych

Suw pracy: Powstałe gazy spalinowe wykonują pracę, przekazując energię na tłok.

Suw wylotu (wydechu): Podczas ruchu tłoka od DZP do GZP zawór wylotowy jest otwarty, dzięki czemu przesuwający się tłok wypycha gazy spalinowe na zewnątrz cylindra.


  • 3. Zasady pracy silników spalinowych


  • 3. Zasady pracy silników spalinowych

Zasada działania czterosuwowego silnika z zapłonem samoczynnym jest zbliżona do zasady działania czterosuwowego silnika z zapłonem iskrowym. W miejsce świec zamontowane są wtryskiwacze, którymi podawany jest olej napędowy do komory spalania silnika.


  • 3. Zasady pracy silników spalinowych

W silniku z wirującym tłokiem, tłok w kształcie zbliżonym do trójkąta o lekko „spłaszczonych” krawędziach, mimośrodowo umieszczony korpusie, obracając się tworzy komory: ssawną, sprężania, rozprężania (pracy) i wydechową. W zależności od kąta obrotu tłoka komory te zmieniają kształt i objętość. W czasie jednego obrotu wału, silnik wykonuje 3 cykle pracy - ssanie, sprężanie, wydech. W momencie, gdy mieszanka paliwowo-powietrzna jest maksymalnie sprężona następuje zapłon. Mieszanka paliwowo-powietrzna dostarczana jest przez kanał doprowadzający (3), a spaliny odprowadzane przez kanał odprowadzający (4). Przeniesienie ruchu tłoka na wał odbywa się przez przekładnię zębatą o zazębieniu wewnętrznym. Koło zębate większe jest częścią tłoka, a mniejsze częścią wału napędowego.


  • 3. Zasady pracy silników spalinowych


  • 3. Zasady pracy silników spalinowych

Silnik dwusuwowy jest tak skonstruowany, że zassanie, sprężenie i spalenie mieszanki oraz rozprężenie i usunięcie spalin z cylindra następuje w ciągu dwóch suwów tłoka. Wykonanie tych czynności w ciągu jednego obrotu wału wykorbionego jest możliwe dzięki wykorzystaniu komory korbowej silnika lub zastosowaniu dodatkowej pompy lądującej.


  • 3. Zasady pracy silników spalinowych

W dwusuwowych silnikach małej mocy stosowany jest powszechnie system ładowania cylindra z wykorzystaniem komory korbowej. W silnikach tych, w czasie gdy tłok porusza się od DZP do GZP, powstaje podciśnienie w szczelnie zamkniętej komorze korbowej silnika. Wskutek tego po odsłonięciu otworu ssącego przez dolną krawędź tłoka do skrzyni korbowej zostaje zassana mieszanka paliwa i powietrza wytworzona w gaźniku (w silnikach z zapłonem samoczynnym samo powietrze).

W tym samym czasie w cylindrze odbywa się sprężanie ładunku zassanego w poprzednim cyklu pracy.


  • 3. Zasady pracy silników spalinowych

Przed dojściem tłoka do GZP następuje zapłon mieszanki (lub wtrysk paliwa i jego samozapłon) i rozpoczyna się suw pracy. Tłok poruszający się od GZP w kierunku wału wykorbionego zamyka otwór ssący i powoduje wstępne sprężenie mieszanki w skrzyni korbowej.

Przy końcu suwu rozprężania (pracy) dno tłoka odsłania najpierw szczelinę wydechową w cylindrze silnika, umożliwiając wylot spalin z cylindra, a następnie okno kanału łączącego cylinder ze skrzynię korbowa. Przez kanał ten dopływa do cylindra nowa porcja mieszanki, sprężona uprzednio w skrzyni korbowej.

Dzięki odpowiedniemu umieszczeniu kanałów mieszanka wypełnia cylinder i wypycha do przewodu wydechowego pozostałe resztki spalin. Jest to tzw. przepłukanie cylindra. Kończy się ono, gdy tłok ponownie przesunie się w górę i zamknie najpierw okno kanału przepłukującego, a następnie wydechowego. Od tego momentu zaczyna się w cylindrze sprężanie mieszanki. Gdy dolna krawędź tłoka odsłoni szczelinę ssąca, do skrzyni korbowej napływa mieszanka potrzebna do wykonania następnego cyklu pracy.


ad